• Title/Summary/Keyword: 탄소중립 기술

Search Result 173, Processing Time 0.022 seconds

Advanced Dry Etch Process with Low Global Warming Potential Gases Toward Carbon Neutrality (반도체 탄소 중립을 위한 친환경 가스 기반 식각 공정 연구)

  • Jeonga Ju;Jinkoo Park;Joonki Suh;Hongsik Jeong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.2
    • /
    • pp.99-108
    • /
    • 2023
  • Currently, semiconductor manufacturing industry heavily relies on a wide range of high global warming potential (GWP) gases, particularly during etching and cleaning processes, and their use and relevant carbon emissions are subject to global rules and regulations for achieving carbon neutrality by 2050. To replace high GWP gases in near future, dry etching using alternative low GWP gases is thus being under intense investigations. In this review, we report a current status and recent progress of the relevant research activities on dry etching processes using a low GWP gas. First, we review the concept of GWP itself and then introduce the difference between high and low GWP gases. Although most of the studies have concentrated on potentially replaceable additive gases such as C4F8, an ultimate solution with a lower GWP for main etching gases including CF4 should be developed; therefore, we provide our own perspective in this regard. Finally, we summarize the advanced dry etch process research with low GWP gases and list up several issues to be considered in future research.

A Study on the Safety of Hydrogen Embrittlement of Materials Used for Hydrogen Electric Vehicles (수소전기차 사용소재의 수소취성 안전성에 관한 고찰)

  • HYEONJIN JEON;WONJONG JEONG;SUNGGOO CHO;HOSIK LEE;HYUNWOO LEE;SEONGWOO CHO;ILHO KANG;NAMYONG KIM;HO JIN RYU
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.6
    • /
    • pp.761-768
    • /
    • 2022
  • In the hope of realizing carbon neutrality, Korea has established the goal of expanding the supply of hydrogen electric vehicles through a roadmap to revitalize the hydrogen economy. A prerequisite for successful supply expansion is securing the safety of hydrogen electric vehicles. Certain parts, such as the hydrogen transport pipe and tank, in hydrogen electric vehicles are exposed to high-pressure hydrogen gas over long periods of time, so the hydrogen enters the grain boundary of material, resulting in a degradation of the parts referred to as hydrogen embrittlement. In addition, since the safety of parts utilizing hydrogen varies depending on the type of material used and its environmental characteristics, the necessity for the enactment of a hydrogen embrittlement regulation has emerged and is still being discussed as a Global Technical Regulation (GTR). In this paper, we analyze a hydrogen compatibility material evaluation method discussed in GTR and present a direction for the development of Korean-type hydrogen compatibility material evaluation methods.

Removal of tar and particulate from gasification process using pre-coating technology (바이오매스 가스화 공정의 생성가스 중 타르 및 입자 제거를 위한 pre-coating 기술 연구)

  • Kim, Joon-Yub;Choi, Byoung-Kwon;Jo, Young-Min;Kim, Sang-Bum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.804-815
    • /
    • 2019
  • Due to the depletion and environmental problems of fossil fuel, biomass has arisen as an alternative energy source. Biomass is a renewable and carbon-neutral source. However, it is moister and has lower energy density. Therefore, biomass needs thermal chemical conversion processes like gasification, and it does not only produce a flammable gas, called 'syngas', which consists of CO, H2, and CH4, but also some unwanted byproducts such as tars and some particulates. These contaminants are condensed and foul in pipelines, combustion chamber and turbine, causing a deterioration in efficiency. Thus this work attempted to find a method to remove tars and particles from syngas with a filter which adopts a pre-coating technology for preventing blockage of the filter medium. Hydrated limestone powder and activated carbon(wood char) powder were used as the pre-coat materials. The removal efficiency of the tars was 86 % and 80 % with activated carbon(wood char) coating and hydrated limestone coating, respectively.

Current Status and Prospect of Seaweed-based Biofuels as Renewable Energy Resource (재생가능 에너지원으로서의 해조류 유래 바이오 연료의 현황과 전망)

  • Liu, Jay
    • Clean Technology
    • /
    • v.28 no.2
    • /
    • pp.163-173
    • /
    • 2022
  • Research and development of biofuels as one of the means to mitigate global warming and to avoid fossil fuel depletion has occurred for more than 30 years. However, there has only been limited distribution of a few first- and second-generation biofuels, and widespread supply and consumption of biofuels is still far from a reality. Although a relatively recently studied third-generation biofuel derived from seaweed biomass has been shown to have many advantages, it is yet to be deployed in commercial-scale seaweed biorefineries. This review paper examines the advantages and disadvantages of seaweed biorefineries for the entire value chain covering from seaweed and its cultivation to biofuel production based on an extensive literature search and the author's experience of conducting feasibility studies pertaining to seaweed biorefineries for over 10 years. For this purpose, the literature survey will cover the current status of seaweed production and its research and development worldwide, conversion technologies for biofuel production from seaweed based on bench-scale experiments, and large-scale techno-economic feasibility studies for seaweed conversion to biofuels and bioenergy. In addition, the main problems expected with the commercialization of seaweed-based biofuels will be identified. Finally, the current status of seaweed biorefinery technology and the author's views on its promising future will be summarized.

Catalytic Hydrodeoxygenation of Biomass-Derived Oxygenates: a Review (바이오매스 유래 함산소 화합물의 수첨탈산소 촉매 반응: 총설)

  • Ha, Jeong-Myeong
    • Clean Technology
    • /
    • v.28 no.2
    • /
    • pp.174-181
    • /
    • 2022
  • Biomass is a sustainable alternative resource for production of liquid fuels and organic compounds that are currently produced from fossil fuels including petroleum, natural gas, and coal. Because the use of fossil fuels can increase the production of greenhouse gases, the use of carbon-neutral biomass can contribute to the reduction of global warming. Although biological and chemical processes have been proposed to produce petroleum-replacing chemicals and fuels from biomass feedstocks, it is difficult to replace completely fossil fuels because of the high oxygen content of biomass. Production of petroleum-like fuels and chemicals from biomass requires the removal of oxygen atoms or conversion of the oxygen functionalities present in biomass derivatives, which can be achieved by catalytic hydrodeoxygenation. Hydrodeoxygenation has been used to convert raw biomass-derived materials, such as biomass pyrolysis oils and lignocellulose-derived chemicals and lipids, into deoxygenated fuels and chemicals. Multifunctional catalysts composed of noble metals and transition metals supported on high surface area metal oxides and carbons, usually selected as supports of heterogeneous catalysts, have been used as efficient hydrodeoxygenation catalysts. In this review, the catalysts proposed in the literature are surveyed and hydrodeoxygenation reaction systems using these catalysts are discussed. Based on the hydrodeoxygenation methods reported in the literature, an insight for feasible hydrodeoxygenation process development is also presented.

Analysis of the Importance of Eco-friendly Ship Dissemination Policy using the Analytic Hierarchy Process (계층분석법(AHP)을 이용한 친환경선박 보급정책의 중요도 분석)

  • Bae, Cheol-Su;Yang, Won-Jae
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.1
    • /
    • pp.117-124
    • /
    • 2022
  • The International Maritime Organization (IMO) is tightening environmental regulations in the shipping sector to reduce air pollutants such as greenhouse gases emitted from ships. Meanwhile, the paradigm of the shipbuilding and shipping industries is shifting toward eco-friendly and high-efficiency ships worldwide. The Republic of Korea is also promoting a policy to expand the supply of eco-friendly ships from 2020 to disseminate them. In this article, a survey was conducted with 12 experts on the government's eco-friendly ship supply policy, and the priority of the policy was evaluated using the analytic hierarchy process (AHP). As a result of the comprehensive evaluation of the priorities for six priority tasks, "Securing the world's leading technology for future eco-friendly ships" for the development of carbon-free and low carbon ships was the highest. This study, which analyzed the importance of eco-friendly ship policies through AHP analysis, can be used as data to preemptively respond to international marine environmental regulations and to improve policy execution efficiency such as budget allocation and policy development regarding protecting national shipping and shipbuilding industries.

Cost Estimation Model for Introduction to Virtual Power Plants in Korea (국내 가상발전소 도입을 위한 비용 추정 모델)

  • Park, Hye-Yeon;Park, Sang-Yoon;Son, Sung-Yong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.2
    • /
    • pp.178-188
    • /
    • 2022
  • The introduction of virtual power plants is actively being discussed to solve the problem of grid acceptability caused by the spread of distributed renewable energy, which is the key to achieving carbon neutrality. However, a new business such as virtual power plants is difficult to secure economic feasibility at the initial stage of introduction because it is common that there is no compensation mechanism. Therefore, appropriate support including subsidy is required at the early stage. But, it is generally difficult to obtain the cost model to determine the subsidy level because of the lack of enough data for the new business model. In this study, a survey of domestic experts on the requirements, appropriate scale, and cost required for the introduction of virtual power plants is conducted. First, resource composition scenarios are designed from the survey results to consider the impact of the resource composition on the cost. Then, the cost estimation model is obtained using the individual cost estimation data for their resource compositions using logistic regression analysis. In the case study, appropriate initial subsidy levels are analyzed and compared for the virtual power plants on the scale of 20-500MW. The results show that mid-to-large resource composition cases show 29-51% lower cost than small-to-large resource composition cases.

Designing a Sustainable Energyscape - Based on the 'Sun-Garden' Project in Solaseado Solar Power Plant, Haenam - (지속 가능한 에너지스케이프의 설계 - 해남 솔라시도 태양광 발전단지 내 '태양의 정원' 설계안을 중심으로 -)

  • Kim, Bo kyung;Lee, Byung Chul
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.52 no.3
    • /
    • pp.103-113
    • /
    • 2024
  • This study is based on the design project of 'Sun-Garden' within the Solaseado Solar Power Plant located in Solaseado, which is a New City being developed in Haenam, Jeollanam-do. The purpose of this study is to create an integrated and sustainable energyscape that harmonizes energy infrastructure with the natural environment, while supporting the city's carbon neutrality agenda. To achieve this, design principles were established by considering three key aspects. The first aspect is economic, which seeks to create multifunctional spaces that integrate nature and technology, pursuing long-term sustainability while generating additional economic value. The second aspect is natural, emphasizing the creation of planting environments that conserve and enhance ecosystems, introduce region-specific species, and maintain ecosystem services and sustainable resource use. The third aspect is landscape, offering sensory and educational experiences to visitors and functioning as a landmark that symbolizes the carbon-neutral garden city of Solaseado through the aesthetic harmony of nature and technology. Through the creation of the 'Sun-Garden,' the Solaseado Solar Power Plant exemplifies a sustainable energyscape development model that merges economic, environmental, and landscape aspects beyond the conventional energy production facility. This project is expected to provide guidelines and implications for future energy infrastructure design, contributing to global energy transition efforts.

Four strategic approaches to the national nature restoration plan for achieving carbon neutrality and national environment recovery (탄소중립 및 국토환경 회복을 위한 녹색복원 종합계획의 4가지 전략적 접근)

  • Son, Seung-Woo;Lee, Sang-Hyuk;Kim, Byung-Suk;Lee, Gil-Sang;Choi, Hee-Sun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.27 no.2
    • /
    • pp.1-16
    • /
    • 2024
  • To achieve carbon neutrality and restore the national environment, there is growing interest in policies to transform national land areas into green space, such as expanding nature-based solutions, increasing biodiversity, and improving ecosystem service functions. In addition to complying with international agreements such as the United Nations Framework Convention on Climate Change and the Convention on Biological Diversity, it is necessary to expand green spaces to achieve the 2050 Carbon Neutrality goal, which can be achieved by restoring the damaged land in an ecological way. However, it is challenging to implement green restoration in a systematic and active way due to conflicts of interest among landowners and lack of institutional support and advanced technology. Therefore, this study aims to develop a strategy to expand green restoration and implement it smoothly and systematically. This study examined the current status of green restoration in South Korea by investigating green restoration laws and systems and overseas trends, and by surveying the perceptions of 1,000 people selected from a pool of the public. The results of this study show that it is difficult to implement the green restoration efficiently because the laws related to restoration are scattered. According to the relevant legal plans, the perception and direction of restoration is to pursue a sustainable national land environment, allow people to benefit from nature, improve the quality of life, and nurture related industries and human resources. In the international community, it is mentioned that green restoration contributes to achieving the 2050 Carbon Neutrality goal, revitalizing green industries, developing and applying advanced technologies, maintaining consistency in restoration-related policies, expanding citizens' access to green spaces, and adopting nature-based solutions. Both experts and the public are aware of the seriousness of the damage to the natural environment and prefer restoration with human use rather than focusing on natural recovery. It is expected that this study will contribute to the future direction of green restoration and the implementation of tasks for the sustainable restoration of the national land environment and the zero-carbon era.

Life Cycle Environmental Impacts Benefits Analysis of Remanufactured Injector Considering the Avoided Effect (회피효과를 고려한 인젝터 재제조의 전과정 환경영향 효익 분석)

  • Nam Seok Kim;Young Woon Kim;Yong Woo Hwang;Hong-Yoon Kang;Young Ho Kim
    • Clean Technology
    • /
    • v.30 no.2
    • /
    • pp.94-104
    • /
    • 2024
  • Remanufacturing re-commercializes a used product to achieve an equal or higher performance level than the original product by disassembling, cleaning, inspecting, repairing, reconditioning, and reassembling the used product. The remanufacturing industry is a key industry necessary to realize carbon neutrality by 2050. This study uses life cycle assessment to analyze the resource reduction and greenhouse gas reduction effects with and without considering the avoided effect for an injector, which is an automobile part that is actively being remanufactured. The results of this study showed that the resource reduction effect and greenhouse gas reduction effect induced by injector remanufacturing were reduced by 95.30% and 93.88%, respectively, based on one unit without considering the avoided effect. However, when considering the avoided effect, which in this case is the environmental impact of not disposing of the used injector and not having to use natural resources to manufacture a new injector because the used injector was reused during remanufacturing, the resource reduction effect and greenhouse gas reduction effect were 190.91% and 188.33%, respectively. The results of this study are expected to be used in the future to evaluate the amount of environmental impact reduction while considering the avoided effect during remanufacturing and to help develop research methodology for remanufacturing.