• Title/Summary/Keyword: 탄소전극

Search Result 561, Processing Time 0.032 seconds

Synthesis of Mesoporous Tin Oxide and Its Application as a Gas Sensor (메조세공을 갖는 이산화 주석의 합성 및 가스센서로서의 응용)

  • Kim, Nam-Hyon;Kim, Geon-Joong
    • Applied Chemistry for Engineering
    • /
    • v.18 no.2
    • /
    • pp.142-147
    • /
    • 2007
  • In this study, mesoporous tin oxide was synthesized by sol-gel method using $C_{16}TMABr$ surfactant as a template in a basic condition. The optimum conditions for the synthesis of mesoporous $SnO_2$ were investigated and the obtained samples were characterized by XRD, nitrogen adsorption and TEM analysis. A mesoporous and nanostructured $SnO_2$ gas sensor with Au electrode and Pt heater has been fabricated on alumina substrate as one unit via a screen printing process. Sensing abilities of fabricated sensors were examined for CO and $CH_4$ gases, respectively, at $350^{\circ}C$ in the concentration range of 1~10,000 ppm. Influence of loading amount of palladium impregnated on $SnO_2$ was also tested in detection of those gases. High sensitivity to detecting gases and the fast response speed with stability were obtained with the mesoporous tin oxide sensor as compared to a non-porous one under the same detection conditions.

Driving Characteristics of Flexible Reflective Display Using Carbon Nanotube Electrode (탄소나노튜브 전극을 이용한 플렉시블 반사형 디스플레이의 구동 특성)

  • Hwang, In-Sung;Kim, Young-Cho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.6
    • /
    • pp.451-455
    • /
    • 2012
  • To compare an electrical and optical characteristics of indium tin oxide (ITO) and carbon nanotube (CNT) electrode on flexible and reflective display, we fabricate two charged particle-type display panels under the same panel condition of which the width of ribs is 10 ${\mu}m$, the cell size is $300{\mu}m{\times}300{\mu}m$, the q/m value of the white particles is -4.3 ${\mu}C/g$ and that for the black is +1.3 ${\mu}C/g$, and the cell gap is 75 ${\mu}m$, 125 ${\mu}m$, and 175 ${\mu}m$. We use plastic substrates coated with ITO and CNT electrode. To evaluate optical property, we measure a response time of particles using a laser and a photodiode. Threshold and driving voltages of CNT electrode according to the sheet resistance of 300, 600, 1,000 (ohm/sq) are compared with ITO electrode of 10 (ohm/sq). A response time of the CNT panel is similar to that of ITO panel, but the threshold and driving voltages of CNT panel are higher than that of ITO panel, inducing a large bombardment of the particles and shortening the lifetime of the panel. High difference of a threshold and a driving voltage of CNT panel will induce an particle clumping, resulting degradation of the panel. A bending radius of the fabricated CNT panel is 18 ${\mu}m$.

Co-Embedded Graphitic Porous Carbon Nanofibers for Pt-Free Counter Electrode in Dye-Sensitized Solar Cells (염료감응형 태양전지의 비백금 상대전극을 위한 Co가 내재된 Graphitic 다공성 탄소나노섬유)

  • An, Hye Lan;Kang, Hye-Rhin;Sun, Hyo Jeong;Han, Ji Ho;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.25 no.12
    • /
    • pp.672-677
    • /
    • 2015
  • Co-embedded graphitic porous carbon nanofibers(Co-GPCNFs) are synthesized by using an electrospinning method. Their morphological, structural, electrochemical, and photovoltaic properties are investigated. To obtain the optimum condition of Co-GPCNFs for dye-sensitized solar cells(DSSCs), the amount of cobalt precursor in an electrospinning solutuion are controlled to be 0 wt%(conventional CNFs), 1 wt%(sample A), and 3 wt%(sample B). Among them, sample B exhibited a high degree of graphitization and porous structure compared to conventional CNFs and sample A, which result in the performance improvement of DSSCs. Therefore, sample B showed a high current density(JSC, $12.88mA/cm^2$) and excellent power conversion efficiency(PCE, 5.33 %) than those of conventional CNFs($12.00mA/cm^2$, 3.78 %). This result can be explained by combined effects of the increased contact area between the electrode and elecytolyte caused by improved porosity and the increased conductivity caused by the formation of a high degree of graphitization. Thus, the Co-GPCNFs may be used as a promising alternative of Pt-free counter electrode in DSSCs.

Ni Nanoparticles-Graphitic Carbon Nanofiber Composites for Pt-Free Counter Electrode in Dye-Sensitized Solar Cells (염료감응 태양전지의 비백금 상대전극을 위한 니켈 나노입자-흑연질 탄소나노섬유 복합체)

  • Oh, Dong-Hyeun;Koo, Bon-Ryul;Lee, Yu-Jin;An, HyeLan;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.26 no.11
    • /
    • pp.649-655
    • /
    • 2016
  • Ni nanoparticles (NPs)-graphitic carbon nanofiber (GCNF) composites were fabricated using an electrospinning method. The amounts of Ni precursor used as catalyst for the catalytic graphitization were controlled at 0, 2, 5, and 8 wt% to improve the photovoltaic performances of the nanoparticles and make them suitable for use as counter electrodes for dye-sensitized solar cells (DSSCs). As a result, Ni NPs-GCNF composites that were fabricated with 8 wt% Ni precursors showed a high circuit voltage (0.73 V), high photocurrent density ($14.26mA/cm^2$), and superb power-conversion efficiency (6.72%) when compared to those characteristics of other samples. These performance improvements can be attributed to the reduced charge transport resistance that results from the synergetic effect of the superior catalytic activity of Ni NPs and the efficient charge transfer due to the formation of GCNF with high electrical conductivity. Thus, Ni NPs-GCNF composites may be used as promising counter electrodes in DSSCs.

The Effect of Electrical Characteristics and Electrode Shape on Alignment of Multi-walled Carbon Nanotubes (전기장 특성과 전극 형상이 다중벽 탄소나노튜브 정렬에 미치는 영향)

  • Kwon, Se-Hun;Jeong, Young-Keun;Jung, Chang-Sik;Kang, Myung-Chang;Lee, Hyung-Woo
    • Journal of Powder Materials
    • /
    • v.17 no.4
    • /
    • pp.326-335
    • /
    • 2010
  • In this paper, the effect of electrical characteristics and electrode shape on the alignment and attachment of multi-walled carbon nanotubes (MWNTs) has been studied. The attraction and alignment of MWNTs between the gaps has been investigated by applying electric field which is called electrophoresis and dielectrophoresis. According to the frequency of electric field, positive or negative dielectrophoretic force can be determined. The concentration of MWNTs solution was $5\;{\mu}g/ml$, and a droplet of $1.0{\sim}1.5\;{\mu}l$ was dropped between two electrodes. Through the repeated experiments, the optimal electrical conditions for aligning and attaching MWNTs in the desired places were obtained. Since the frequency range of 100 kHz~10 MHz generated positive dielectrophoretic force, MWNTs were attracted and aligned between the gaps with this frequency range. For generating enough force to attract MWNTs, the appropriate voltage range was $0.3{\sim}1.3\;V_{rms}/{\mu}m$. Furthermore, the effect of electrode shape on the alignment of MWNTs was investigated. A single MWNT attachment was accomplished on the round shaped with 70% yield.

Study on Characteristics of EP-MAP Hybrid Machining by Optimization of Magnetic Flux Density (자기력 최적화에 따른 전해-자기 복합가공의 특성 평가에 관한 연구)

  • Park, Chang Geun;Kwak, Jae Seob
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.3
    • /
    • pp.319-324
    • /
    • 2013
  • In this study, an EP (electro-polishing)-MAP (magnetic abrasive polishing) hybrid process was developed as a precision finishing process. To evaluate the characteristics of this EP-MAP hybrid process, a series of experiments were carried out using various working gaps, current densities, and electrolyte concentrations. As a result, $NaNO_3$ was found to be very suitable as the electrolyte of the hybrid process because there was no electrochemical reaction with the CNT-Co composite. Moreover, an increase in the magnetic flux density affected the liquidity of the electrolyte and prevented it from flowing into the CNT-Co composite powder. For that reason, the lower liquidity of the electrolyte increased the thermal energy on the surface of the workpiece.

Synthesis of Carbon Nanotubes Supported PtCo Electrocatalysts and Its Characterization for the Cathode Electrode of PEMFC (탄소나노튜브에 담지된 PtCo 촉매 제조 및 PEMFC Cathode 전극 특성)

  • Jung, Dong-Won;Park, Soon;Kang, Jung-Tak;Kim, Jun-Bom
    • Korean Journal of Materials Research
    • /
    • v.19 no.5
    • /
    • pp.233-239
    • /
    • 2009
  • The electrocatalytic behavior of the PtCo catalyst supported on the multi-walled carbon nanotubes (MWNTs) has been evaluated and compared with commercial Pt/C catalyst in a polymer electrolyte membrane fuel cell(PEMFC). A PtCo/MWNTs electrocatalyst with a Pt:Co atomic ratio of 79:21 was synthesized and applied to a cathode of PEMFC. The structure and morphology of the synthesized PtCo/MWNTs electrocatalysts were characterized by X-ray diffraction and transmission electron microscopy. As a result of the X-ray studies, the crystal structure of a PtCo particle was determined to be a face-centered cubic(FCC) that was the same as the platinum structure. The particle size of PtCo in PtCo/MWNTs and Pt in Pt/C were 2.0 nm and 2.7 nm, respectively, which were calculated by Scherrer's formula from X-ray diffraction data. As a result we concluded that the specific surface activity of PtCo/MWNTs is superior to Pt/C's activity because of its smaller particle size. From the electrochemical impedance measurement, the membrane electrode assembly(MEA) fabricated with PtCo/MWNTs showed smaller anodic and cathodic activation losses than the MEA with Pt/C, although ohmic loss was the same as Pt/C. Finally, from the evaluation of cyclic voltammetry(CV), the unit cell using PtCo/MWNTs as the cathode electrocatalyst showed slightly higher fuel cell performance than the cell with a commercial Pt/C electrocatalyst.

Improved Characteristics of Carbon Nanotube Transparent Electrode Films Using Acid Treatments (산 처리를 이용한 탄소 나노튜브 투명전극 특성 향상)

  • Jeon, Joo-Hee;Choi, Ji-Hyuk;Moon, Kyeong-Ju;Lee, Tae-Il;Moon, Ho-Jun;Kim, Hyung-Yeol;Myoung, Jae-Min
    • Korean Journal of Materials Research
    • /
    • v.20 no.2
    • /
    • pp.51-54
    • /
    • 2010
  • Transparent conductive films of single wall carbon nanotube (SWCNT) were prepared by spray coating method. The effect of acid treatment on the SWCNT films was investigated. The field emission scanning electron microscope (FESEM) shows that acid treatment can remove dispersing agent. The electrical and optical properties of acid-treated films were enhanced compared with those of as deposited SWCNT films. Nitric acid ($HNO_3$), sulfuric acid ($H_2SO_4$), nitric acid:sulfuric acid (3:1) were used for post treatment. Although all solutions reduced sheet resistance of CNT films, nitric acid can improve electrical characteristics efficiently. During acid treatment, transmittance was increased continuously with time. But the sheet resistance was decreased for the first 20 minutes and then increased again. Post-treated SWCNT films were transparent (85%) in the visible range with sheet resistance of about $162{\Omega}/sq$. In this paper we discuss simple fabrication, which is suitable for different types of large-scale substrates and simple processes to improve properties of SWCNT films.

Preparation of Shape-Controlled Palladium Nanoparticles for Electrocatalysts and Their Performance Evaluation for Oxygen Reduction Reaction (연료전지 전극촉매용 팔라듐 나노입자 형상 제어 및 산소환원반응 성능 평가)

  • KIM, KYOUNG-HEE;LEE, JUNG-DON;LEE, HYOJUNE;PARK, SEOK-HEE;YIM, SUNG-DAE;JUNG, NAMGEE;PARK, GU-GON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.5
    • /
    • pp.450-457
    • /
    • 2018
  • To design the practical core-shell electrocatalysts, combination of core and shell materials is important to meet catalytic activity and durability target. In general, Pd is considered as a good core material due to its best activity caused by strain/ligand effect. Preparing Pd nanoparticles can be a starting point in fabricating core-shell type electrocatalysts, much simplified Pd preparing process is suggested by using carbon monoxide (CO) as a reducing agent and/or capping agent. The solvent composition and reaction temperature can control to nanosheet, tetrahedron, and sphere without using additional stabilizer. Among them, Pd nanosheet which has mainly (111) plane showed about 3 times higher electrocatalytic activity for oxygen reduction reaction (ORR) to the spherical Pd nanoparticles. The enhanced ORR activity of Pd nanosheets can be attributed to the exposure of Pd (111) surface and the high electrochemical surface area. Therefore, we demonstrated that the shape of Pd nanomaterials is easily controlled via a facile reduction method using CO, and (111) plane-oriented Pd nanosheets can be a promising ORR catalysts and core material for polymer electrolyte fuel cells (PEFCs).

Selective Enhancement of the Sheet Resistance of Graphene Using Dielectrophoresis (유전영동 현상을 이용한 그래핀 면저항의 선택적 향상 연구)

  • Oh, Sooyeoun;Kim, Jihyun
    • Korean Chemical Engineering Research
    • /
    • v.55 no.2
    • /
    • pp.253-257
    • /
    • 2017
  • Graphene is a monolayer carbon material which consists of $sp^2$ bonding between carbon atoms. Its excellent intrinsic properties allow graphene to be used in various research fields. Many researchers believe that graphene is suitable for electronic device materials due to its high electrical conductivity and carrier mobility. Through chemical doping, n- or p-type graphene can be obtained, and consequently graphene-based devices which have more comparable structure to common semiconductor-based devices can be fabricated. In our research, we introduced the dielectrophoresis process to the chemical doping step in order to improve the effect of chemical doping of graphene selectively. Under 10 kHz and $5V_{pp}$ (peak-to-peak voltage), doping was conducted and the Au nanoparticles were effectively formed, as well as aligned along the edges of graphene. Effects of the selective chemical doping on graphene were investigated through Raman spectroscopy and the change of its electrical properties were explored. We proposed the method to enhance the doping effect in local region of a graphene layer.