• Title/Summary/Keyword: 탄소입자

Search Result 644, Processing Time 0.024 seconds

Relationship between Grain Size and Organic Carbon Content of Surface Sediments in the Major Estuarine Areas of Korea (국내 주요 하구역 표층퇴적물의 입도와 유기탄소 함량 관계)

  • BOO-KEUN KHIM;JU-YEON YANG;HYUK CHOI;KWANGKYU PARK;KYUNG HOON SHIN
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.28 no.4
    • /
    • pp.158-177
    • /
    • 2023
  • An estuary is a transitional water area that links the land and sea through rivers and streams, transporting various components from the land to the sea, which plays an important role in determining primary productivity in the coastal environment, and this coastal ecosystem captures a huge amount of carbon into biomass, known as blue carbon, which mitigates climate change as a potential carbon reservoir. This study examined the variation of mean grain size and organic carbon content of the surface sediments for 6 years and analyzed their relationship in the western and southern estuarine areas (Han River Estuary, Geum River Estuary, Yeongsan River Estuary, Seomjin River Estuary, and Nakdong River Estuary) and the East Sea upwelling area. During the sampling period (2015 to 2020), seasonal variation of both properties was not observed, because their variations might be controlled by diverse oceanographic environments and hydrographic conditions within each survey area. However, despite the synoptic problem of all samples, the positive relationship was obtained between the averages of mean grain size and organic carbon content, which clearly distinguishes each survey area. The unique positive relationship in all estuarine areas implies that the same process by sediment clay particles is important in the organic carbon accumulation. However, additional important factor may be expected in the organic carbon accumulation in the East Sea upwelling area. Further necessary data (sedimentation rate, dry bulk density etc) should be required for the estimation of carbon stock to evaluate the major estuaries in Korea as potential carbon reservoirs in the coastal environment.

Hierarchical Finite-Element Modeling of SiCp/Al2124-T4 Composites with Dislocation Plasticity and Size-Dependent Failure (전위 소성과 크기 종속 파손을 고려한 SiCp/Al2124-T4 복합재의 계층적 유한요소 모델링)

  • Suh, Yeong-Sung;Kim, Yong-Bae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.2
    • /
    • pp.187-194
    • /
    • 2012
  • The strength of particle-reinforced metal matrix composites is, in general, known to be increased by the geometrically necessary dislocations punched around a particle that form during cooling after consolidation because of coefficient of thermal expansion (CTE) mismatch between the particle and the matrix. An additional strength increase may also be observed, since another type of geometrically necessary dislocation can be formed during extensive deformation as a result of the strain gradient plasticity due to the elastic-plastic mismatch between the particle and the matrix. In this paper, the magnitudes of these two types of dislocations are calculated based on the dislocation plasticity. The dislocations are then converted to the respective strengths and allocated hierarchically to the matrix around the particle in the axisymmetric finite-element unit cell model. The proposed method is shown to be very effective by performing finite-element strength analysis of $SiC_p$/Al2124-T4 composites that included ductile failure in the matrix and particlematrix decohesion. The predicted results for different particle sizes and volume fractions show that the length scale effect of the particle size obviously affects the strength and failure behavior of the particle-reinforced metal matrix composites.

Synthesis of Polymer-Carbon Nanotubes Composite Nanoparticles and Their Applications into Forming Hybrid Composite Thin Films (폴리머-탄소나노튜브 복합체 에어로졸 입자의 생성 및 이를 이용한 하이브리드 복합체 박막 제조)

  • Kim, Whi-Dong;Ahn, Ji-Young;Kim, Soo Hyung
    • Particle and aerosol research
    • /
    • v.6 no.2
    • /
    • pp.61-67
    • /
    • 2010
  • In this paper, we describe a new method to form polymer thin films, in which carbon nanotubes (CNTs) are homogeneously distributed so that they can strengthen the mechanical property of resulting polymer film. To do so, we first homogeneously mixed CNTs with polymer in a DMF solvent. With the assistance of ultrasonic nebulizer, the polymer/CNT solution was then aerosolized into micro-sized droplets and finally turned into solidified polymer/CNT composite particles by gas-phase drying process. As the results of SEM and TEM analysis, CNTs were found to be homogeneously immobilized in the polymer matrix particles due to rapid drying process in the gas phase. For comparison purpose, (i) the polymer/CNTs composite particles prepared by aerosol processing method and (ii) polymer/CNTs sheets prepared by simple solution-evaporation method were employed to form polymer/CNTs composite thin films using a hot press. As the result, the aerosol processing of composite particles was found to be a much more effective method to form homogeneously distributed-CNTs in the polymer matrix thin film.

Effects of Coal Particle Array on Coal Combustion (미분탄 입자들의 배열이 미분탄 연소에 미치는 영향)

  • Cho, Chong-Pyo;Kim, Ho-Young;Chung, Jin-Taek
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.12 s.243
    • /
    • pp.1321-1328
    • /
    • 2005
  • The burning characteristics of interacting coal particles in a convective flow are numerically investigated at various Reynolds numbers. The transient combustion of 2-dimensionally arranged particles, both the fixed particle distances of 5 radii to 20 radii horizontally and 4 radii to 24 radii vertically, is studied. The results obtained from the present numerical analysis indicate that the transient flame configuration and retardation of particle temperature augmentation with the horizontal or vertical particle spacing substantially influence devolatilization process and carbon conversion ratio of interacting particles. Volatile release and carbon conversion ratio of the second particle with decreasing horizontal and vertical particle spacing decrease gradually, whereas those of the first particle with decreasing vertical particle spacing increase due to flow acceleration. When the vertical particle spacing is smaller than $6R_0$, volatile release and carbon conversion ratio of the second particle decrease due to reduction of flame penetration depth and interference of oxygen diffusion by the first particle.

Reduction Characteristics of Mass Produced Particle for Chemical-Looping Combustor with Different Fuels (매체순환식 가스연소기용 대량생산입자의 연료별 환원반응특성)

  • Ryu, Ho-Jung;Kim, Kyung-Su;Lee, Seung-Yong;Park, Yeong-Seong;Park, Moon-Hee
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.4
    • /
    • pp.348-358
    • /
    • 2008
  • Reduction reactivity and carbon deposition characteristics of mass produced oxygen carrier particle(OCN-650) have been investigated by using hydrogen, methane, syngas, and natural gas as fuels. For all fuels, the maximum conversion and oxygen transfer capacity increased as the temperature increase. The reduction rate and the oxygen transfer rate increased as the temperature increase for methane. However, those values showed maximum at 900$^{\circ}C$ for hydrogen, syngas, and natural gas. To explain consistently the change of maximum conversion, reduction rate, oxygen transfer capacity, oxygen transfer rate and degree of carbon deposition for different fuels, new parameters such as reactive carbon contents and require oxygen per input gas were adopted.

Experimental Study on Estimation of Oxidation Rate of PM inside of Diesel Particulate Filter (DPF내 포집된 입자상 물질의 산화율 산출을 위한 실험적 연구)

  • Shim, Beomjoo;Park, Kyoungsuk;Jo, Kyuhee;Lee, Hyeongjun;Min, Byeongdu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.2
    • /
    • pp.98-103
    • /
    • 2013
  • Conventional method to estimate mass of particulate matter accumulated in diesel particulate filter is to use pressure difference between upstream and downstream of the filter. Then measured pressure difference should be compared that of clean condition which is no particulate matter accumulated in DPF. During regeneration soot oxidation is also estimated by same method. This methodology, however, has demerit on accuracy because of pressure difference deviation of clean DPFs and pressure difference caused by non-carbon based PM which is different from that of caused by carbon based PM. This study suggests new methodology to estimate accumulated soot oxidation rate through exhaust gas characteristics during regeneration. Results, more high accuracy of soot oxidation was obtained by analysis of relationship between fuel mass and concentration of carbon dioxide and oxygen.

Influence of the Cation Parts of Imidazolium Hexafluorophosphate on Synthesis of Pd/C Particles as a HFP Hydrogenation Catalyst (Imidazolium Hexafluorophosphate의 양이온이 HFP 수소화 반응용 Pd/C 촉매 제조에 미치는 영향)

  • Kim, Chang-Soo;Yoo, Kye Sang
    • Applied Chemistry for Engineering
    • /
    • v.25 no.3
    • /
    • pp.249-253
    • /
    • 2014
  • Palladium on carbon catalysts for hexafluoropropylene hydrogenation were prepared using imidazolium hexafluorophosphate with various cation parts. The morphology of palladium was relatively affected by the cation parts of the ionic liquid. With increasing alkyl chains of the ionic liquid cation, the shape of palladium particle changed from spherical to cylindrical due to the effect of steric stabilization. After calcination at $500^{\circ}C$, all catalysts possessed the comparable crystal structure. Under the identical reaction conditions, the catalyst prepared using the ionic liquid with hexyl chain in cation parts showed the most effective reactivity.

Durability and Driving Characteristics of Flexible Electronic Paper Display Using CNT Electrode (CNT 전극을 적용한 플렉시블 전자종이 디스플레이의 내구성 및 구동특성)

  • Kim, Young-Cho
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.2
    • /
    • pp.127-133
    • /
    • 2022
  • Two types of charged particle-type electronic paper display panels with electrodes using ITO and CNT are fabricated to compare durability and electro-optical characteristics. The sheet resistance of the ITO electrode is 10 (ohm/sq.), and the sheet resistance of the CNT electrode is 300, 600, 1000 (ohm/sq.), and durability is carried out by impact and flexibility measurements. Variation in case of the ITO electrode begins at shocks of 40 times and curvature radius of 10 mm, and no change is observed in the CNT electrode. The driving voltage, electric field required for particle movement, reflectivity, and response time measurements show similar results for all ITO and CNT electrodes.

Trend and policy directions of primary carbonaceous aerosols in Seoul (서울의 일차탄소성분 입자 농도 변화 및 관리 방향)

  • Eunlak Choi;Ji Yi Lee;Yong Pyo Kim
    • Particle and aerosol research
    • /
    • v.20 no.1
    • /
    • pp.13-24
    • /
    • 2024
  • The concentrations of polycyclic aromatic hydrocarbons (PAHs) and elemental carbon (EC) in particulate matter, typical primary aerosols have decreased in Seoul between 2003 and 2018 (80% for PAHs and 85% for EC). The yearly mean benzo[a]pyrene (BaP) concentration has been lower than 1 ng/m3 since 2010-2011, the target value set by the European Union (EU) and China. A series of policies related to solid fuel and vehicle in South Korea and China should be effective in the reduction of the ambient PAHs and EC concentrations. But the emission data of PAHs and EC at both countries did not support that hypothesis. Possible causes are uncertainties in the emission inventories of primary carbonaceous aerosols in South Korea and China, although there may be a minor effect of the emissions from North Korea on the concentrations in Seoul. Thus the further policy directions against PAHs and EC such as improvements of emissions inventories and measurements, intensive regulation of non-road mobile sources and control of PAHs derivatives are discussed.

PILC Characterization Study for SCR catalyst (SCR 촉매용 PILC 특성 연구)

  • 성희제;이성영
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.05b
    • /
    • pp.99-99
    • /
    • 2003
  • 육상에서 발생하는 공해 물질뿐만 아니라 해상에서 발생하는 공해 물질에 대한 관심이 높아진 가운데 선박에서 발생하는 탄화수소, 질소산화물, 일산화탄소, 이산화황 및 입자상 물질의 규제에 관한 방안이 가시화되고 있는 현실이다. 선박엔진에서 발생하는 질소산화물 제거 연구를 위해서 당사에서는 엔진 연료 분사 시스템에 관한 연구와 더불어 후처리 설비인 SCR 연구를 병행하고 있다. 본 연구는 당사 개발 촉매인 PILC(Pillared Interlayer Clay)를 이용한 SCR 적용에 관한 연구 결과중 촉매 특성에 관한 부분이다. (중략)

  • PDF