DOI QR코드

DOI QR Code

Trend and policy directions of primary carbonaceous aerosols in Seoul

서울의 일차탄소성분 입자 농도 변화 및 관리 방향

  • Eunlak Choi (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Ji Yi Lee (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Yong Pyo Kim (Research Center for Strategic Solutions for Environmental Blindspots in the Interest of Society)
  • 최은락 (이화여자대학교 환경공학과) ;
  • 이지이 (이화여자대학교 환경공학과) ;
  • 김용표 (이화여자대학교 환경블라인드스팟 연구센터)
  • Received : 2024.02.15
  • Accepted : 2024.03.16
  • Published : 2024.03.31

Abstract

The concentrations of polycyclic aromatic hydrocarbons (PAHs) and elemental carbon (EC) in particulate matter, typical primary aerosols have decreased in Seoul between 2003 and 2018 (80% for PAHs and 85% for EC). The yearly mean benzo[a]pyrene (BaP) concentration has been lower than 1 ng/m3 since 2010-2011, the target value set by the European Union (EU) and China. A series of policies related to solid fuel and vehicle in South Korea and China should be effective in the reduction of the ambient PAHs and EC concentrations. But the emission data of PAHs and EC at both countries did not support that hypothesis. Possible causes are uncertainties in the emission inventories of primary carbonaceous aerosols in South Korea and China, although there may be a minor effect of the emissions from North Korea on the concentrations in Seoul. Thus the further policy directions against PAHs and EC such as improvements of emissions inventories and measurements, intensive regulation of non-road mobile sources and control of PAHs derivatives are discussed.

Keywords

Acknowledgement

이 연구는 2024년도 과학기술정보통신부의 재원으로 한국연구재단-동북아-지역연계 초미세먼지 대응 기술개발 사업의 지원을 받아 수행함. (과제번호: 2020M3G1A1114537)

References

  1. ATSDR (The Agency for Toxic Substances and Disease Registry). (1995). Toxicological profile for polycyclic aromatic hydrocarbons [ATSDR Tox Profile] (CIS/97/00215). https://www.atsdr.cdc.gov/substances/toxsubstance.asp?toxid=25
  2. Bae, M., Kim, H. C., Kim, B.-U., & Kim, S. (2018). PM2.5 Simulations for the Seoul Metropolitan Area:(V) Estimation of North Korean Emission Contribution. Journal of Korean Society for Atmospheric Environment, 34(2). https://doi.org/10.5572/KOSAE.2018.34.2.294
  3. Cheng, Y., Chow, J. C., Watson, J. G., Zhou, J., Liu, S., & Cao, J. (2021). Decreasing concentrations of carbonaceous aerosols in China from 2003 to 2013. Scientific Reports, 11(1), 5352. https://doi.org/10.1038/s41598-021-84429-w
  4. Cheong S. W. & Kim, N. (2021). Effects and Management Risk of Air Quality Management Policies in the Seoul Metropolitan Area: Focusing on lessening PM10 and NO2 in the pollution reduction project of in-use diesel vehicles Cheong, Sang Woo, Kim, Nan Young. (37), 5-36. http://data.doi.or.kr/10.22651/JAI.2021.37.5
  5. Choi, E. L., Lee, J. Y., Kim, Y. P. (2024). Long-term (1993-2018) particulate polycyclic aromatic hydrocarbons (PAHs) concentration trend in the atmosphere of Seoul: Changes in major sources and health effects. Atmospheric Environment, 319, 120418, https://doi.org/10.1016/j.atmosenv.2024.120418.
  6. Choi, N. R., Lee, S. P., Lee, J. Y., Jung, C. H., & Kim, Y. P. (2016). Speciation and source identification of organic compounds in PM10 over Seoul, South Korea. Chemosphere, 144, 1589-1596. https://doi.org/10.1016/j.chemosphere.2015.10.041
  7. Crippa, M., Solazzo, E., Huang, G., Guizzardi, D., Koffi, E., Muntean, M., Schieberle, C., Friedrich, R., & Janssens-Maenhout, G. (2020). High resolution temporal profiles in the Emissions Database for Global Atmospheric Research. Scientific Data, 7(1), 121. https://doi.org/10.1038/s41597-020-0462-2
  8. EU (European Union). (2004). Directive 2004/107/EC of the European Parliament and of the Council of 15 December 2004 relating to arsenic, cadmium, mercury, nickel and polycyclic aromatic hydrocarbons in ambient air (Off J Eur Union L, Issue. http://data.europa.eu/eli/dir/2004/107/2015-09-18
  9. Han, H., Kum, H., Kim, Y. P., & Jung, C. H. (2023). Evaluation of the Effectiveness and Efficiency of Atmospheric Particulates Reduction Policy: The Case of South Korea. Asian Journal of Atmospheric Environment, 16(2), 2021130. https://doi.org/10.5572/ajae.2021.130
  10. Han, S., Lee, J. Y., Heo, J., & Kim, Y. P. (2019). Temporal Trend of the Major Contributors for the Particulate Polycyclic Aromatic Hydrocarbons (PAHs) in Seoul. Aerosol and Air Quality Research, 19(2), 318-330. https://doi.org/https://doi.org/10.4209/aaqr.2018.06.0231
  11. Hayakawa, K., Tang, N., Nagato, E., Toriba, A., Lin, J.-M., Zhao, L., Zhou, Z., Qing, W., Yang, X., Mishukov, V., Neroda, A., & Chung, H.-Y. (2020). Long-Term Trends in Urban Atmospheric Polycyclic Aromatic Hydrocarbons and Nitropolycyclic Aromatic Hydrocarbons: China, Russia, and Korea from 1999 to 2014. International journal of environmental research and public health, 17(2), 431. https://doi.org/10.3390/ijerph17020431
  12. Hong, Q., Xie, Z., Liu, C., Wang, F., Xie, P., Kang, H., Xu, J., Wang, J., Wu, F., & He, P. (2016). Speciated atmospheric mercury on haze and non-haze days in an inland city in China. https://doi.org/10.5194/acp-16-13807-2016
  13. Hong, S. B., Kang, C.H., Kim, W.H., Kim, Y.P., Yi, S.M., Ghim, Y.S., Song, C.H., Jung, C.H., Hong, J.H. (2009). PAHs concentrations of PM10 in Seoul metropolitan area (in Korean). Journal of Korean Society for Atmospheric Environment, 25(4), 347-359. https://doi.org/10.5572/KOSAE.2009.25.4.347
  14. Kang, M., Kim, K., Choi, N., Kim, Y. P., & Lee, J. Y. (2020). Recent Occurrence of PAHs and n-Alkanes in PM2.5 in Seoul, Korea and Characteristics of their Sources and Toxicity. Int J Environ Res Public Health, 17(4). https://doi.org/10.3390/ijerph17041397
  15. Kim, B. M., Lee, S.-B., Kim, J. Y., Kim, S., Seo, J., Bae, G.-N., & Lee, J. Y. (2016). A multivariate receptor modeling study of air-borne particulate PAHs: Regional contributions in a roadside environment. Chemosphere, 144, 1270-1279. https://doi.org/https://doi.org/10.1016/j.chemosphere.2015.09.087
  16. Kim, I. S., Lee, J. Y., & Kim, Y. P. (2013). Impact of polycyclic aromatic hydrocarbon (PAH) emissions from North Korea to the air quality in the Seoul Metropolitan Area, South Korea. Atmospheric Environment, 70, 159-165. https://doi.org/https://doi.org/10.1016/j.atmosenv.2012.12.040
  17. Kim, Y., Yi, S.-M., & Heo, J. (2020). Fifteen-year trends in carbon species and PM2.5 in Seoul, South Korea (2003-2017). Chemosphere, 261, 127750. https://doi.org/https://doi.org/10.1016/j.chemosphere.2020.127750
  18. Kim, Y. P., & Lee, G. (2018). Trend of Air Quality in Seoul: Policy and Science. Aerosol and Air Quality Research, 18(9), 2141-2156. https://doi.org/10.4209/aaqr.2018.03.0081
  19. Lee, J. Y., & Kim, Y. P. (2007). Source apportionment of the particulate PAHs at Seoul, Korea: impact of long range transport to a megacity. Atmos. Chem. Phys., 7(13), 3587-3596. https://doi.org/10.5194/acp-7-3587-2007
  20. Lee, J. Y., Kim, Y. P., & Kang, C.-H. (2011). Characteristics of the ambient particulate PAHs at Seoul, a mega city of Northeast Asia in comparison with the characteristics of a background site. Atmospheric Research, 99(1), 50-56. https://doi.org/https://doi.org/10.1016/j.atmosres.2010.08.029
  21. MEE (Minsitry of Ecology and Environment of the People's Republic of China). (2012). Ambient air quality standards. GB 3095-2012. China Environmental Science Press, Beijing. https://english.mee.gov.cn/Resources/standards/Air_Environment/quality_standard1/201605/t20160511_337502.shtml
  22. MOE (Ministry of Environment of Korea). (2020). Monthly Report of Air Quality, September 2020. Sejong, Korea. https://library.me.go.kr/#/search/detail/5702746?offset=4
  23. Mu, X., Zhu, X., & Wang, X. (2015). An emission inventory of polycyclic aromatic hydrocarbons in China. EGU General Assembly Conference Abstracts, https://meetingorganizer.copernicus.org/EGU2015/EGU2015-10012.pdf
  24. Nisbet, I. C. T., & LaGoy, P. K. (1992). Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regulatory Toxicology and Pharmacology, 16(3), 290-300. https://doi.org/https://doi.org/10.1016/0273-2300(92)90009-X
  25. Ohara, T., Akimoto, H., Kurokawa, J.-i., Horii, N., Yamaji, K., Yan, X., & Hayasaka, T. (2007). An Asian emission inventory of anthropogenic emission sources for the period 1980-2020. https://doi.org/10.5194/acp-7-4419-2007
  26. Seinfeld, J. H., & Pandis, S. N. (2016). Atmospheric chemistry and physics: from air pollution to climate change. John Wiley & Sons.
  27. Shin, S. M., Lee, J. Y., Shin, H. J., & Kim, Y. P. (2022). Seasonal variation and source apportionment of Oxygenated Polycyclic Aromatic Hydrocarbons (OPAHs) and Polycyclic Aromatic Hydrocarbons (PAHs) in PM2.5 in Seoul, Korea. Atmospheric Environment, 272, 118937. https://doi.org/https://doi.org/10.1016/j.atmosenv.2022.118937
  28. Song, I. H., Park, J. S., Park, S. M., Kim, D. G., Kim, Y. W., & Shin, H. J. (2021). Seasonal characteristics of PM1 in Seoul, Korea, measured using HR-ToF-Aerosol Mass Spectrometer in 2018. Atmospheric Environment, 266, 118717. https://doi.org/https://doi.org/10.1016/j.atmosenv.2021.118717
  29. USEPA (United States Environmental Protection Agency). (1982). Office of the Federal Registration (OFR) Appendix A: priority pollutants. https://www.ecfr.gov/current/title-40/chapter-I/subchapter-N/part-423/appendix-Appendix%20A%20to%20Part%20423
  30. Vuong, Q. T., Kim, S.-J., Nguyen, T. N. T., Thang, P. Q., Lee, S.-J., Ohura, T., & Choi, S.-D. (2020). Passive air sampling of halogenated polycyclic aromatic hydrocarbons in the largest industrial city in Korea: Spatial distributions and source identification. Journal of Hazardous Materials, 382, 121238. https://doi.org/https://doi.org/10.1016/j.jhazmat.2019.121238
  31. Wang, T., Li, B., Liao, H., & Li, Y. (2021). Spatiotemporal distribution of atmospheric polycyclic aromatic hydrocarbon emissions during 2013-2017 in mainland China. Science of the Total Environment, 789, 148003. https://doi.org/https://doi.org/10.1016/j.scitotenv.2021.148003
  32. Wang, Z., Wang, R., Wang, J., Wang, Y., McPherson Donahue, N., Tang, R., Dong, Z., Li, X., Wang, L., Han, Y., & Cao, J. (2022). The seasonal variation, characteristics and secondary generation of PM2.5 in Xi'an, China, especially during pollution events. Environmental Research, 212, 113388. https://doi.org/https://doi.org/10.1016/j.envres.2022.113388