• Title/Summary/Keyword: Polycyclic aromatic hydrocarbons %28PAHs%29

Search Result 2, Processing Time 0.016 seconds

Effects of Evaporation on the Weathering Rate and Chemical Composition of Iranian Heavy Crude Oil (이란산 원유의 증발에 따른 풍화율 및 화학적 성상 변화)

  • Kim, Beom;Kim, Gi-Beum;Sim, Won-Joon;Yim, Un-Hyuk
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.15 no.3
    • /
    • pp.238-246
    • /
    • 2012
  • Once oil is spilled into marine environment, it experiences various weathering processes among which evaporation is the most dominant process in the initial stage of weathering. This study aimed to elucidate the effects of evaporation on the physicochemical properties of spilled oil using standardized laboratory experiments. Laboratory evaporation process was successfully reproduced using controlled rotary evaporation method. In case of Iranian Heavy crude (IHC), evaporation rate after 48 hours was $29.3{\pm}0.4%$ (n=40, p<0.001). Evaporation was simulated using ADIOS2 weathering model and the result was in agreement with laboratory experiment. Chemical composition changes of petroleum hydrocarbons including alkanes, polycyclic aromatic hydrocarbons (PAHs) and biomarkers by evaporation rate were also analyzed. As oil evaporated, low molecular weight alkanes and PAHs decreased, while biomakers showed conservative characteristics. Among biomarkers, $17{\alpha}(H)$, $21{\beta}(H)$-hopane was used for calculation of weathering rates, which matched with evaporative mass losses. Weathering rate calculation using hopane showed that stranded oils of weathering stage I (28.9%) and mesocosm oil weathering experiment till 5 days (26.5%) were mainly affected by evaporation process.

Degradation of Phenanthrene and Pyrene by Burkholderia sp. D5 (Burkholderia sp. D5에 의한 phenanthrene과 pyrene 분해)

  • Kim, Tae-Jeong;Jo, Gyeong-Suk;Ryu, Hui-Uk
    • Korean Journal of Microbiology
    • /
    • v.39 no.4
    • /
    • pp.267-271
    • /
    • 2003
  • Burkholderia sp. D5, a polyaromatic hydrocarbons(PAHs)-degrading bacterium, was isolated from oil-contaminated soil. The bacterium could utilize phenanthrene (Phe) as a sole carbon source but could not use pyrene (Pyr). However, the strain could degrade Pyr when a cosubstrate such as yeast extract (YE) was supplemented. The PAH degradation rate of the bacterium was enhanced by the addition of other organic materials such as YE, peptone and glucose. YE was a particularly effective additive in stimulating cell growth as well as PAH degradation. When 1 g-YE/L was supplemented into the basal salt medium (BSM) with 215 mg-Phe/L, the specific growth rate (0.28 h-1) and Phe-degrading rate (29.30 μmol/L/h) were enhanced approximately ten and two times more than those obtained in the BSM with 215 mg-Phe/L, respectively. Through kinetic analysis, the maximum specific growth rate (μmax) and PAH degrading rate (Vmax) for Phe were obtained as 0.34/h and 289 ${\mu}mol$/L/h, respectively. Also, μmax and Vmax for Pyr were 0.27 h-1 and 50 ${\mu}mol$/L/h, respectively. The degradation rates for each Phe (2.20 μmol/L/h) and Pyr (2.18 μmol/L/h) were lower in mixture substrates than in a single substrate (29.30 ${\mu}mol$/L/h and 9.58 ${\mu}mol$/L/h, respectively). Burkholderia sp. D5 can degrade Phe and Pyr contained in soil, and the PAH degradation rates in soil were 20.03 ${\mu}mol$/L/h for Phe and 1.09 ${\mu}mol$/L/h for Pyr.