• Title/Summary/Keyword: 탄소입자

Search Result 646, Processing Time 0.033 seconds

Application of Unburned Carbon Produced from Seochun Power Plant (서천화력발전소 매립 석탄재에서 분리한 미연탄소의 재활용 방안)

  • Lee, Sujeong;Cho, Seho;Lee, Young-Seak;An, Eung-Mo;Cho, Sung-Baek
    • Resources Recycling
    • /
    • v.23 no.1
    • /
    • pp.40-47
    • /
    • 2014
  • Feasibility of utilizing unburned carbon residue in coal ash as a potential precursor for the production of activated carbon was assessed to seek for solution to recycle unburned carbon residue. The unburned carbon concentrate generated from the 4 stages of cleaner flotation has a grade of 87% carbon. The crystalline impurities in the concentrate included quartz and mullite. Unburned carbon had a low specific surface area of $10m^2/g$, which might be related to a high degree of coalification of domestic anthracite coal. Carbon particles were mostly porous and have a turbostratic structure. When 1g of carbon was activated with 6g of KOH powder, the highest specific surface area value of $670m^2/g$ was achieved. Low wettability of unburned carbon particles, which was resulted from high temperature combustion in a boiler, might cause poor pore formation when they were activated by KOH solution. The activated carbon produced in this study developed micropores, with an equivalent quality of general-purpose activated carbon made from coal. Hence, it is concluded that chemically treated unburned carbon can be used for water purification or an alternative to carbon black as it is.

Electrochemical Analysis of the Electrodeposition of Platinum Nanoparticles (백금 나노입자 전착의 전기화학적 분석)

  • Lee, Hae-Min;Cho, Sung-Woon;Kim, Jun-Hyun;Kim, Chang-Koo
    • Korean Chemical Engineering Research
    • /
    • v.53 no.5
    • /
    • pp.540-544
    • /
    • 2015
  • A bath for electrodeposition of platinum nanoparitcles on low-cost graphite substrates was developed to attach nanoparticles directly onto a substrate, and electrochemical characteristics of the electrodeposition of platinum nanoparticles were investigated. The reaction mechanism was examined by the analysis of polarization behavior. Cyclic voltammetry measurements revealed that the elecrodeposition of platinum nanoparticles was limited by mass transfer. The chronoamperometric study showed an instantaneous nucleation mechanism during the electrodeposition of platinum nanoparticles on graphite. Because graphite is much cheaper than other carbon-based substrates, the electrodeposition of platinum nanoparticles on the graphite is expected to have useful applications.

Production of Hydrogen and Carbon Black Using Natural Gas Thermal Decomposition Method (천연가스 열분해법에 의한 수소 및 탄소 제조)

  • Jang, Hun;Lee, Byung Gwon;Lim, Jong Sung
    • Clean Technology
    • /
    • v.10 no.4
    • /
    • pp.203-213
    • /
    • 2004
  • Natural gas thermal decomposition method is the technology of converting natural gas (methane) into hydrogen and carbon at high temperature. The most advantage of thermal decomposition method is that hydrogen and carbon can be produced without emitting carbon dioxide. In this study, the generation of hydrogen and carbon was investigated by this natural gas (methane) thermal decomposition method. We found that pyrocarbon was created on the surface of reactor, carbon black was deposited on the pyrocarbon and final plugging phenomenon took place. To solve this problem, we tried several attempts such as introduction of double pipe reactor instead of single pipe reactor or oxidization of carbon black using $O_2$ or $CO_2$ at regular intervals of reaction. Therefore, some plugging phenomenon was resolved by this methods. Also, carbon particle size was measured by SEM (Scanning Electron Microscope) image and the size was about 200 nm.

  • PDF

Production of Carbon Using Carbonization of Rice Husk in a Fluidized Bed Reactor (유동층반응기에서 왕겨 탄화를 이용한 탄소체 제조)

  • Peng, Meimei;Han, Seung-Dong;Lee, Joo-Bo;Lee, Sung-Yong;Jeong, Ui-Min;Jang, Hyun-Tae
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.11a
    • /
    • pp.309-312
    • /
    • 2010
  • 본 연구에서는 유동층반응기를 이용하여 왕겨의 탄화반응을 수행하였다. 탄화반응은 내경 40mm, 높이 1.8m의 유동층을 사용하였으며, 분산판은 다공성 스테인레스스틸을 사용하였다. 탄화반응은 질소를 이용하여 수행하였다. 왕겨 주입입자 크기는 직경 2.0mm, 0.715mm, 0.359mm, 0.194mm를 각각 사용하였으며, 유동층의 온도는 $400^{\circ}C$, $500^{\circ}C$, $600^{\circ}C$, $700^{\circ}C$에서 탄화특성을 측정하였다. 또한 유동층의 매질로는 직경 1.0mm의 Co-Mo-Fe/$Al_2O_3$ 촉매를 사용하였으며, 탄화물은 유동층상부에 설치된 사이크론에 의하여 포집 분리 되었다. 탄화온도, 유속, 입자크기 등 조업변수에 따른 생성 탄소체의 물성을 규명하여 최적 조업조건을 제시하였다.

  • PDF

Investigation of Thermal Stability of Epoxy Composite Reinforced with Multi-Walled Carbon Nanotubes and Micrometer-Sized Silica Particles (다중벽 탄소나노튜브와 마이크로미터 크기 실리카 입자로 강화된 에폭시 복합재료의 열 안정성에 관한 연구)

  • Oh, Ryun;You, Byeong Il;Ahn, Ji Ho;Lee, Gyo Woo
    • Composites Research
    • /
    • v.29 no.5
    • /
    • pp.306-314
    • /
    • 2016
  • In this study, to improve the thermal stabilities of the epoxy composite specimens in addition to the enhanced mechanical properties, those were reinforced with carbon nanotubes and micrometer-sized silica particles. To disperse the filler in matrix relatively simple physical process, specimens were fabricated using shear mixing and sonication. Tensile strength, coefficients of thermal expansion and thermal conductivity of the specimens were measured with varied contents of the two fillers. The mechanical and thermal properties were also discussed, and the experimental results of thermal expansion related to the thermal stability of the specimens were compared with those from several micromechanics models. The hybrid composites specimens incorporating 0.6 wt% of carbon nanotubes and 50 wt% of silica particles showed better mechanical properties than the others with increase in tensile strength up to 11%, with respect to those of the baseline specimens. As the silica contents were increased the thermal expansion was reduced down to 36%, and the thermal stability was improved with the decreased thermal deformation. Thermal conductivity of the epoxy composite specimens incorporating 50 wt% of silica particles was enhanced, which demonstrate improvement of 72%. The mechanical and thermal properties of the hybrid composites specimens incorporating the two fillers were improved simultaneously.

Extraction of Micro Filler from Bio-waste Material (Bio waste 소재로부터의 마이크로 필러 추출)

  • Nam, Gibeop;Song, Jung-Il
    • Composites Research
    • /
    • v.31 no.5
    • /
    • pp.209-214
    • /
    • 2018
  • This paper explain about the development of environmental friendly, low cost and stable supply material i.e., rice husk and shell were used as micro incorporating bio waste filler. Those were processed by ball mill and analyzed through micro observation by FE-SEM, EDS and particle size distribution. The obtained filler was mixed with epoxy resin for the manufacturing of CFRP composite and study tensile properties. In EDS analysis main contents of rice husk and rice husk ash are C, O and Si. When rice husk was burned C and Si ration were increased. Shell powder has C, O and Ca. It caused $CaCO_3$ from shell. Surface weighted mean of rice husk powder is $6.19{\mu}m$ and volume weighted mean is $14.77{\mu}m$. And it has rod type particles which caused hair and husk structure parts. Surface weighted mean of rice husk ash powder is $1.55{\mu}m$ and volume weighted means is $8.20{\mu}m$. Surface weighted mean of shell powder is $2.53{\mu}m$ and volume weighted mean is $5.79{\mu}m$. The tensile decreased with increasing the content of micro filler in CFRP composites. In case of rice husk, the significant decrement of tensile strength was observed. and in case of shell powder, there is no effect of changes take place in tensile strength.

A Charecteristics of Marine Environments in a Blood Cockle Farm of the Northwestern Yeoja Bay, Korea. 1. Spatio-temporal Distributions of Chlorophyll a Concentration, Particulate Organic Carbon & Nitrogen (여자만 북서부 꼬막양식어장의 해양환경 특성. 1. 먹이생물로서 Chlorophyll a 농도, 입자태 유기탄소 및 유기질소의 시·공간적 분포 특성)

  • Yoon, Yang Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.7
    • /
    • pp.299-309
    • /
    • 2019
  • This study was designed to assess the quality and quantity of food resources such as the chlorophyll a concentration (Chl-a), the particulate organic carbon (POC) and the particulate organic nitrogen (PON), on blood cocke (Tegillarca granosa Linnaeus) farms from May to November 2017 in the northwestern area of Yeoja Bay, Korea. The values of Chl-a, POC and PON were $1.69-7.68{\mu}g{\cdot}L^{-1}$ (average: $3.48{\mu}g{\cdot}L^{-1}$ in the surface), 0.88-2.58 mM (average: 1.97 mM) and 0.17-0.90 mM (average: 0.54 mM), respectively, and these values were higher in the spring and summer and lower in the autumn. Furthermore, Chl-a and POC had higher values on the bottom layer than those vales on the surface, while PON had higher values on the surface than those values on the bottom. The POC/PON ratio and POC/Chl-a ratio were 1.56-7.88 (average: 3.71 on the surface of the water) and 216-967 (average: 700 on the bottom of the water), respectively, with most of the carbon sources being sediment-accumulated particle organic matter, and the contribution by phytoplankton was assessed as being low. These results show that the food source of the blood cockle farms in the northwest area of Yeoja Bay seems to be abundant in quantity, but this is considered to be very poor in quality.

Electrochemical Properties of SiOx Anode for Lithium-Ion Batteries According to Particle Size and Carbon Coating (입자 크기 및 탄소 코팅에 따른 리튬이온배터리용 SiOx 음극활물질의 전기화학적 특성)

  • Anna Park;Byung-Ki Na
    • Korean Chemical Engineering Research
    • /
    • v.62 no.1
    • /
    • pp.19-26
    • /
    • 2024
  • In this study, the electrochemical properties of SiOx@C composite materials were prepared to alleviate volume expansion and cycle stability of silicon and to increase the capacity of anode material for LIBs. SiO2 particles of 100, 200, and 500 nm were synthesized by the Stӧber method, and reduced to SiOx (0≤x≤2) through the magnesiothermic reduction method. Then, SiOx@C anode materials were synthesized by carbonization of PVC on SiOx. The physical properties of prepared SiOx and SiOx@C anode materials were analyzed by XRD, SEM, TGA, Raman spectroscopy, XPS and BET. The electrochemical properties were investigated by cycling performance, rate performance, CV and EIS test. As a result, the SiOx@C-7030 manufactured by coating carbon at SiOx : C = 70 : 30 on a 100 nm SiOx with the smallest particle size showed the best electrochemical properties with a discharge capacity of 1055 mAh/g and a capacity retention rate of 81.9% at 100 cycles. It was confirmed that cycle stability was impoved by reducing particle size and carbon coating.

Prediction of Wetting and Interfacial Property of CNT Reinforced Epoxy on CF Tow Using Electrical Resistance Method (전기저항 평가법을 이용한 CNT 함유 에폭시의 탄소섬유내 젖음성 및 계면특성 예측 연구)

  • Kwon, Dong-Jun;Choi, Jin-Yeong;Shin, Pyeong-Su;Lee, Hyung-Ik;Lee, Min-Gyeong;Park, Jong-Kyoo;Park, Joung-Man
    • Composites Research
    • /
    • v.28 no.4
    • /
    • pp.232-238
    • /
    • 2015
  • As a new method to predict the degree of dispersion in carbon nanocomposites, the electrical resistance (ER) method has been evaluated. After CNT epoxy resin was dropped on CF tow, the change in electrical resistance of carbon fiber tow was measured to evaluate dispersion condition in CNT epoxy resin. Good dispersion of CNTs in carbon nanocomposite exhibited low change in ER due to wetted resin penetrated on CF tow. However, because CNT network was formed among CFs, non-uniform dispersion occurred due to nanoparticle filtering effect by CF tow. The change in ER for poor dispersion exhibited large ER signal change. The change in ER was used for the dispersion evaluation of CNT epoxy resin. Correlation between interlaminar shear strength (ILSS) and dispersion condition by ER method was established. Good CNT dispersion in nanocomposites led to good interfacial properties of fiberreinforced nanocomposites.

Study on the Regional Deposition of Smoke Particles in Human Respiratory Tract under the Variation of Fire and Breathing Conditions (화재 및 호흡조건 변화에 따른 연기입자의 인체 호흡기 내 영역별 침착량 분석)

  • Goo, Jaehark
    • Fire Science and Engineering
    • /
    • v.33 no.6
    • /
    • pp.95-104
    • /
    • 2019
  • Smoke generated in a fire consists of gaseous substances and particulate matter, such as unburned carbon that adsorbed the gases. Human injury caused by inhalation of gaseous substances present in smoke is mostly short-term, whereas damage caused by inhalation of particulate matter is relatively a long-term phenomenon depending on the state of the gas-phase adsorption. The amount and location of the deposited smoke particles are important factors in estimating the damage caused to humans, which are affected by the breathing conditions as well as particle conditions, such as the size and concentration affected by the combustion conditions. In this study, in order to understand the characteristics of the deposition of smoke particles in the respiratory tract related to the study of human smoke inhalation injury, the number and mass concentration of smoke particles deposited in different areas of the respiratory tract for different fuel types, combustion conditions and breathing conditions were calculated. In addition, the amount of mass deposition of smoke in the respiratory tract for a certain period of inhalation was compared with the atmospheric standard of fine dust.