• Title/Summary/Keyword: 탄소성 특성

Search Result 1,739, Processing Time 0.03 seconds

Comparison of Soil Physico-chemical and Microbial Characteristics in Soil of 'Niitaka' Pear Orchards between Organic and Conventional Cultivations (유기농법과 관행농법에 의해 재배한 '신고'배 과원 토양의 물리화학적 및 미생물학적 특성 비교)

  • Choi, Hyun-Sug;Li, Xiong;Kim, Wol-Soo;Lee, Youn;Jee, Hyeong-Jin
    • Korean Journal of Organic Agriculture
    • /
    • v.19 no.2
    • /
    • pp.229-243
    • /
    • 2011
  • Consumers' interest and government's support for the fruits rapidly increased organic fruit productions. This study was examined to compare the soil physicochemical and microbial properties of orchards soil in conventionally and organically management systems. Organic cultivation had lower soil bulk density, solid phase, and penetration resistance than the conventional cultivation. Soil pH and organic matter contents increased from March to August, and the values were greater in the organic cultivation than the conventional cultivation. Total nitrogen (N) and phosphorous concentrations decreased from March to August, and the organic soils had greater N but lower phosphorous concentrations than the conventional soils. Soil microbial carbon biomass increased 36% and 15% for organic and conventional cultivations, respectively, from March to August. Soil microbial N biomass was greater in June than March or August, and the organic cultivation had a greater biomass N compared to the conventional cultivation. Soil dehydrogenase and chitinase activities were greater in June than in March or August. ${\beta}$-glucosidase activity declined in both cultivations, while the phosphatase activity increased. Organic cultivation had greater enzyme activities in March, June, and August, except for the acid phosphatase activity in June.

Age Constraints on Human Footmarks in Hamori Formation, Jeiu Island, Korea (제주도 하모리층에 발달하는 사람 발자국의 형성시기)

  • Cho Deung-Lyong;Park Ki-Hwa;Jin Jae-Hwa;Hong Wan
    • The Journal of the Petrological Society of Korea
    • /
    • v.14 no.3 s.41
    • /
    • pp.149-156
    • /
    • 2005
  • Ar-Ar, carbon AMS and OSL dating was carried out to clarify the age of the human footmarks on the Hamori Formation, Jeju Island, Korea. $^{40}Ar/^{39}Ar$ ages of trachybasalt from the Songaksan Tuff, which is underlain by the Hamori Formation, range between $10.6{\pm}19.9\;Ka$ and $11.7{\pm}26.3\;Ka$. Radiocarbon AMS ages of humin fractions extracted from sediment samples yielded the maximum limit age of the Hamori Formation as $15,161{\pm}70\;yr$ B.P. The OSL dating of the top and bottom layers of the Hamori Formation gave $6.8{\pm}0.3\;ka$ and $7.6{\pm}0.5\;ka$, respectively, suggesting that timing of the human footmarks formation can be constrained as between ca 6,800 yr B.P. and 7,600 yr B.P.

Effect of Redox Processes and Solubility Equilibria on the Behavior of Dissolved Iron and Manganese in Groundwater from a Riverine Alluvial Aquifer (만경강 하천변 충적 지하수의 용존 Fe와 Mn 거동에 대한 산화-환원 과정과 용해 평형의 효과)

  • Choi, Beom-Kyu;Koh, Dong-Chan;Ha, Kyoo-Chul;Cheon, Su-Hyun
    • Economic and Environmental Geology
    • /
    • v.40 no.1 s.182
    • /
    • pp.29-45
    • /
    • 2007
  • Biogeochemical characteristics involving redox processes in groundwater from a riverine alluvial aquifer was investigated using multi-level monitoring wells (up to 30m in depth). Anaerobic conditions were predominant and high Fe ($14{\sim}37mg/L$) and Mn ($1{\sim}4mg/L$) concentrations were observed at 10 to 20 m in depth. Below 20 m depth, dissolved sulfide was detected. Presumably, these high Fe and Mn concentrations were derived from the reduction of Fe- and Mn-oxides because dissolved oxygen and nitrate were nearly absent and Fe and Mn contents were considerable in the sediments. The depth range of high Mn concentration is wider than that of high Fe concentration. Dissolved organics may be derived from the upper layers. Sulfate reduction is more active than Fe and Mn reduction below 20 m in depth. Disparity of calculated redox potential from the various redox couples indicates that redox states are in disequilibrium condition in groundwater. Carbonate minerals such as siderite and rhodochrosite may control the dissolved concentrations of Fe(II) and Mn(II), and iron sulfide minerals control for Fe(II) where sulfide is detected because these minerals are near saturation from the calculation of solubility equilibria.

A Comparison between the Decomposition of Bisphenol A and the Concentration of Hydrogen Peroxide Formed during Ozone/Catalyst Oxidation Process (오존/촉매 산화공정에서 비스페놀 A의 분해와 생성된 과산화수소의 농도 비교)

  • Choi, Jae Won;Lee, Hak Sung
    • Applied Chemistry for Engineering
    • /
    • v.28 no.6
    • /
    • pp.619-625
    • /
    • 2017
  • In this study, the formation of hydroxyl radical and decomposition characteristics of bisphenol A (BPA) was investigated by quantifying hydrogen peroxide formed as a reaction by-product during the formation stage of hydroperoxyl radical. The direct oxidation reaction by ozone only decomposed BPA just like the Criegee mechanism under the condition where radical chain reactions did not occur. Non-selective oxidation reactions occurred under the conditions of pH 6.5 and 9.5 where radical chain reactions do occur, confirming indirectly the formation of hydroxyl radical. The decomposition efficiency of BPA by the added catalysts appeared in the order of $O_3$/PAC ${\geq}$ $O_3/H_2O_2$ > $O_3$/high pH > $O_3$ alone. 0.03~0.08 mM of hydrogen peroxide were continuously measured during the oxidation reactions of ozone/catalyst processes. In the case of $O_3$/high pH process, BPA was completely decomposed in 50 min of the oxidation reaction, but reaction intermediates formed by oxidation reaction were not oxidized sufficiently with 29% of the removal ratio for total organic carbon (TOC, selective oxidation reaction). In the case of $O_3/H_2O_2$ and $O_3$/PAC processes, BPA was completely decomposed in 40 min of the oxidation reaction, and reaction intermediates formed by the oxidation reaction were oxidized with 57% and 66% of removal ratios for TOC, respectively (non-selective oxidation reactions).

A Study on the Formation of OH Radical by Metal-supported Catalyst in Ozone-catalytic Oxidation Process (오존촉매산화공정에서 금속 담지촉매에 의한 수산화라디칼 생성연구)

  • Lee, Sun Hee;Choi, Jae Won;Lee, Hak Sung
    • Applied Chemistry for Engineering
    • /
    • v.29 no.4
    • /
    • pp.432-439
    • /
    • 2018
  • Metal catalysts such as Fe, Co, Mn, and Pd supported on the activated carbon (AC) were prepared to improve functional groups for the chemical adsorption and catalytic ozonation. Following ascending orders of the phenol decomposition rate, dissolved ozone decomposition ratio and TOC (total organic carbon) removal from experimental results of advanced oxidation process (AOP) were observed: Fe-AC < AC < Co-AC < Mn-AC < Pd-AC. BET analysis results showed that the physical properties of the metal impregnated activated carbon had no effect on the catalytic ozonation, and the catalytic effect was dependent on the kind of impregnated metal. The ratio of the formed concentration of OH radical to that of ozone (RCT) was measured by using the decomposition outcome of p-chlorobenzoic acid, a probe compound that reacts rapidly with OH radical but slowly with ozone. The measured values of RCT were $5.48{\times}10^{-9}$ and $1.47{\times}10^{-8}$ for the ozone alone and activated carbon processes, respectively, and $2.13{\times}10^{-9}$, $1.51{\times}10^{-8}$, $4.77{\times}10^{-8}$, and $5.58{\times}10^{-8}$ for Fe-AC, Co-AC, Mn-AC, and Pd-AC processes, respectively.

Kinetic Analysis for the Pyrolysis of Solid Refues Fuel Using Livestock Manure (축분 고형연료의 열분해 동역학 연구)

  • Jang, Eun-Suk;Song, Eunhye;Yoon, Jonghyuk;Kim, Young-Min
    • Applied Chemistry for Engineering
    • /
    • v.31 no.4
    • /
    • pp.443-451
    • /
    • 2020
  • In this study, the physico-chemical properties and pyrolysis kinetics of livestock mature solid fuel were investigated to know its feasibility as a fuel. Ultimate and proximate analysis results showed that livestock mature solid fuel has high contents of volatile matter (64.94%), carbon (44.35%), and hydrogen (5.54%). The low heating value of livestock mature solid fuel (3880 kcal/kg) was also higher than the standard requirement of solid fuel (3000 kcal/kg). Thermogravimetic analysis results indicated that livestock mature solid fuel has three decomposition temperature regions. The first temperature zone (130~330 ℃) was consisted with the vaporization of extracts and the decomposition of hemicellulose and cellulose. The second (330~480 ℃) and third (550~800 ℃) temperature regions were derived from the decomposition of lignin and additional decomposition of carbonaceous materials, respectively. The activation energy derived from model free kinetic analysis results including Friedman, Flynn-Wall-Ozawa (FWO), and Kissinger-Akahira-Sunose (KAS) methods for the pyrolysis of livestock mature solid fuel was in the range of 173.98 to 525.79 kJ/mol with a conversion rate of 0.1 to 0.9. In particular, the activation energy increased largely at the higher conversion than 0.6. The kinetic analysis using a curve-fitting method suggested that livestock mature solid fuel was decomposed via a multi-step reaction which can be divided into five decomposition steps.

Microstructure of Co-base superalloy prepared by a investment casting (정밀주조법으로 제조된 Co계 초내열 합금의 미세구조)

  • Lee, Jung-Il;Lee, Ho Jun;Cho, Hyun Su;Paeng, Jong Min;Park, Jong Bum;Ryu, Jeong Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.6
    • /
    • pp.313-318
    • /
    • 2017
  • The microstructure of a cobalt-base superalloy (ECY768) obtained by an investment casting process was studied. This work focuses on the resulting microstructures arising from different melt and mold temperatures in normal industrial environmental conditions. The characterization of the samples was carried out using optical microscopy, field emission scanning electron microscopy and energy-dispersive spectroscopy. In this study, the as-cast microstructure is an ${\alpha}-Co$ (face-centered cubic) dendritic matrix with the presence of a secondary phase, such as $M_{23}C_6-type$ carbides precipitated at grain boundaries. These precipitates are the main strengthening mechanism in this type of alloy. Other minority phases, such as the MC-type phase, was also detected and their presence could be linked to the manufacturing process and environment.

화학독립영양미생물 Aeromonas sp. strain JS-1의 RubisCO 정제 및 특성

  • Na, Suk-Hyeon;Bae, Sang-Ok;Kim, Min-Jeong;Kim, Seong-Jun;Jeong, Seon-Yong
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.461-464
    • /
    • 2002
  • A Chemoautotroph identified as an Aeromonas sp. strain JS-1 was isolated from fresh water. Aeromonas sp. strain JS-1 used the $H_2$ and $CO_2$ as energy and carbon sources, respectively. Growth characteristics for improving the $CO_2$ fixation rate were examined in batch cultivation. Its results shown that the optimal growth appeared at culture conditions of $35^{\circ}C$, pH 7 and NaCl 0.1%(w/v). Some hydrogen-oxidizing bacteria were reported that the enzyme activity of ribulose 1,5-bisphosphate carboxylase- oxygenase (RubisCO-EC 4.1.1.39), in the key enzyme of the Calvin-Benson cycle. A RubisCO was purified from a chemoautotrophic bacterium, Aeromonas sp. strain JS-1. the enzyme was purified by ammonium sulfate precipitation, DEAE-sepharose CL-6B and gel filtration chromatography. The RubisCO showed that molecular mass was about 560KDa from gel filtration chromatography and nondenaturing PAGE, and the RubisCO was confirmed to consist of $L_8S_8$ enzyme structure by sodium dodecyl sulfate polyacrylamide gel electrophoresis. A large subunit was about 56KDa and small one was about 15kDa. The Km values of the enzyme for ribulose 1,5-bisphosphate(RUBP), $NaH^{14}CO_3$, and $Mg^{++}$ were estimated to be 0.25mM, 5.2mM, and 0.91mM, respectively. The optimum temperature for RubisCO enzymatic activity were $50^{\circ}C$, and the enzymatic activity was stable up to $45^{\circ}C$.

  • PDF

Comparison of the Influence of Carbon Substrates on the Fibrolytic Activities of Neocallimastix sp. NLRI-3 (탄소원의 종류가 반추위 혐기 곰팡이 Neocallimastix sp. NLRI-3의 섬유소 분해효소 활력에 미치는 영향 비교)

  • 손호진;송재용;최낙진;하종규;장종수
    • Journal of Animal Science and Technology
    • /
    • v.48 no.3
    • /
    • pp.415-424
    • /
    • 2006
  • The purpose of this study was to investigate the fungal growth and enzyme production under different carbohydrate substrate conditions. The anaerobic fungus Neocallimastix sp. NLRI-3 isolated from the rumen of Korean native goat was incubated with different carbohydrate media containing 0.2% of glucose, starch, rice straw, filter paper, carboxymethyl cellulose(CMC), Sigmacell cellulose, xylan or xylose, respectively. The culture head gas production was the highest in the culture of filter paper medium, and the lowest in the culture of CMC medium at 96h incubation (P<0.05). The fungal zoospore production reached peak at 72h incubation, and its number was the highest in rice straw medium among the treatments (P<0.05). At 96h incubation, carboxymethyl cellulase(CMCase) activity was the highest in the culture of filter paper medium and the lowest in the culture of starch medium (P<0.05). While xylanase activity was the highest in the culture of rice straw medium and the lowest in the culture of xylose medium(P<0.05) at 72h incubation. There were no differences in culture supernatant protein expression among the treatments. However, the patterns of enzyme expression were different among the treatments with zymogram analysis. Six CMCases and 4 xylanase were detected from the results of zymogram analysis. Therefore the present study indicating that the fungal enzyme expression could be stimulated with insoluble substrates in the culture medium.

Cause Analysis in Candle Fire Investigation (양초화재 원인 감정에 관한 연구)

  • Han, Dong-Hun
    • Fire Science and Engineering
    • /
    • v.30 no.3
    • /
    • pp.104-109
    • /
    • 2016
  • Candle fires do not occur frequently, but can easily result in death. In this study, the thermal characteristics of candles and conditions and debris of candle fires were investigated to determine the causes of candle fires. The rates of decrease in weight of 10 candles were measured and found to be between 2.6 g/h and 6.7 g/h. Most candle fires are caused by the ignitiong of combustible materials close to them. The temperature near a candle ranges from about $200^{\circ}C$ to $400^{\circ}C$ at a distance of 1 cm and low ignition temperature materials such as papers can easily catch fire. The melting temperature of candles ranges between $50^{\circ}C$ and $70^{\circ}C$ and their major chemical components are fatty acids and normal hydrocarbons (over C20). Using pretreatment conditions involving the use of activated charcoal strips at $150^{\circ}C$ for 16 hours, the fire debris including candle residues were analyzed using a Gas-chromatograph/Mass-spectrometer (GC/MS).