• Title/Summary/Keyword: 탄성 보

Search Result 1,084, Processing Time 0.03 seconds

Vibration and Stability of Non-uniform Tapered Beams resting on a Two-Layered Elastic Foundation (2층 탄성기초위에 놓인 불균일 테이퍼진 보의 진동과 안정성)

  • 류봉조;임경빈;이종원;한재섭
    • Journal of KSNVE
    • /
    • v.9 no.4
    • /
    • pp.828-834
    • /
    • 1999
  • The paper describes the vibration and the stability of nonuniform tapered beams resting on two-layered elastic foundations. The two-layered elastic foundations are constructed by discributed Winkler springs and shearing layers as ofen used in oil models. Governing equations are derived from energy experssions using Hamilton's Principle. The associated eigenvalue problems are solved to obtain the free vibration frequencies or the buckling loads. Numerical results for the vibration and the stability of beams under an axial force are presented and compared with other available solutions. Finally, vibration frequencies and critical forces are investigated for various thickness ratios, shear foundation parameters, Winkler foundation parameters, and boundary conditions of tapered beams.

  • PDF

Implementation of semi-infinite boundary condition for dynamic finite element analysis (동적 유한요소해석에서의 반무한 경계조건의 실행)

  • Choi, Chang-Ho;Chung, Ha-Ik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.600-606
    • /
    • 2006
  • 실제 지반은 경계가 없는 무한상태로 존재하기 때문에 지반구조물의 동적거동을 유한요소법을 이용하여 해석할 시 모델의 영역을 성립하는 것은 특별한 고려가 필요하다. 유한요소법에서의 동적해석은 파동의 전달을 포함하기 때문에 모델의 경계에서 인공적인 경계조건이 필요하다. 인공적인 경계 조건은 유한요소내의 지반상태를 무한상태로 변형시킬 수 있어야 하며, 경계에 도달하는 응력 파동을 모델내로 반사시키지 않고 흡수 할 수 있어야 한다. 본 논문에서는 간단한 점 탄성 반무한 불연속 요소를 이용하여 지반구조물의 동적해석을 수행하는 방법을 보여준다. 반무한 요소의 실행은 OpenSees라는 유한요소 해석프로그램을 이용하여 수행되었으며, 예를 통하여 불연속 요소가 경계에 도달하는 응력 파동을 충분히 흡수하여 유한요소 모델을 반무한 상태로 전환 시킬 수 있다는 것을 보여준다.

  • PDF

Dynamic Contact Analysis of a Wheel Moving on an Elastic Beam with a High Speed (탄성 보 위를 고속 주행하는 바퀴의 동접촉 해석)

  • Lee, Ki-Su
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.5
    • /
    • pp.541-549
    • /
    • 2008
  • The dynamic contact between a high-speed wheel and an elastic beam is numerically analyzed by solving the whole equations of motion of the wheel and the beam subjected to the contact condition. For the stability of the numerical solution, the velocity and acceleration constraints as well as the displacement constraint are imposed on the contact point. Through the numerical examples, it is shown that the acceleration contact constraint including the Coriolis and centripetal accelerations are crucial for the numerical stability.

Free Vibration of Beams with a Guided Mass and an Elastic Spring Support (안내질량을 갖는 탄성지지된 보의 자유진동)

  • Ryu, Bong-Jo;Lee, Gyu-Seop;Lee, Jong-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.2
    • /
    • pp.176-184
    • /
    • 1996
  • The paper describes the vibration characteristics of the mechanical system consisting of a uniform Timoshenko beam with a guided mass and an elastic spring support. The free end of the beam does not rotate and the spring attatched to the guided mass is elastically restrained against translation. The guided mass is assumed to be a rigid body having a finite size, but not a mass point as it has been assumed so far. The effect of magnitudes, rotary inertia and the size of the guided mass on the vibration characteristics is fully investigated by the numerical simulation using FEM and experiment. In order to verify the eigenvalue sensitivity for considered system, comparison exact solutions with FEM is conducted, and a good agreement between two solutions is also highlighted.

  • PDF

Vibration Analysis of Rotating Cantilever Beams Considering the Elastic Foundation Effect (지지부 탄성효과를 고려한 회전 외팔 보의 진동해석)

  • 윤경재;유홍희
    • Journal of KSNVE
    • /
    • v.10 no.6
    • /
    • pp.1022-1028
    • /
    • 2000
  • This paper presents a modeling method for the vibration analysis of rotating cantilever beams considering the elastic foundation effect. Mass and stiffness matrices are derided explicitly by considering coupling effect between stretching and bonding motion. Numerical results show that the bending direction elastic foundation stiffness influences the vibration characteristics significantly in practical range of beam configuration. The ranges of elastic foundation stiffness to avoid the dynamic buckling are also presented. The method presented in this paper can be used to predict the variations of natural frequencies of rotating cantilever beams with elastically restrained root.

  • PDF

Influence of Partial Elastic Foundations on Dynamic Stability of a Cantilevered Timoshenko Beam with a Tip Mass under a follower force (끝단 질량을 갖고 종동력을 받는 외팔 Timoshenko 보의 동적안정성에 미치는 부분 탄성기초의 영향)

  • Shin, Kwang-Bok;Kim, Hyo-Jun;Ryu, Bong-Jo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.10 s.175
    • /
    • pp.65-71
    • /
    • 2005
  • This paper presents the dynamic stability of a cantilevered Timoshenko beam on partial elastic foundations subjected to a follower force. The beam with a tip concentrated mass is assumed to be a Timoshenko beam taking into account its rotary inertia and shear deformation. Governing equations are derived by extended Hamilton's principle, and finite element method is applied to solve the discretized equation. Critical follower force depending on the attachment ratios of partial elastic foundations, rotary inertia of the beam and magnitude and rotary inertia of the tip mass is fully investigated.

Experiments on Dynamic Response of an Elastically Restrained Beam under a Moving Mass (이동질량에 의한 탄성 지지된 보의 동적응답 실험)

  • 이종원;류봉조;이규섭;김효준
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.275-280
    • /
    • 2003
  • This paper discusses on the dynamic responsed of an elastically restrained beam under a moving mass of constant velocity. Governing equations of motion taking into account of all inertia effects of the moving mass were derived by Galerkin's mode summation method, and Runge-Kutta integration method was applied to solve the differential equations. Numerical solutions for dynamic deflections of beams were obtained for the changes of the various parameters (spring stiffness, spring position, mass ratios and velocity ratios of the moving mass). In order to verify the numerical predictions for the dynamic response of the beam, experiments were conducted. Numerical solutions for the dynamic responses of the test beam have a good agreement with experimental ones.

  • PDF

Effect of a Partial Elastic Foundation on Dynamic Stability of a Cantilevered Timoshenko Beam under a Follower Force (종동력을 받는 외팔 Timoshenko보의 동적안정성에 미치는 부분탄성기초의 영향)

  • Ryu, Bong-Jo;Ryu, Si-Ung;Han, Hyun-Hee;Kim, Hyo-Jun
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.911-916
    • /
    • 2004
  • The paper deals with the dynamic stability of a cantilevered Timoshenko beam on partial elastic foundations subjected to a follower force. The beam is assumed to be a Timoshenko beam with a concentrated mass taking into account its rotary inertia and shear deformation. Governing equations are derived by extended Hamilton's principle, and FEM is applied to solve the discretized equation. Critical follower force depending on the attachment ratios of partial elastic foundations, concentrated mass and rotary inertia of the beam is fully investigated.

  • PDF

The Stiffness Analysis of Circular Plate Regarding the Length of Supporting End Using Elastic Beam Theory (탄성보 이론을 적용한 원형평판의 지지단길이 변화에 따른 강성도 해석)

  • 한동섭;한근조;심재준;김태형
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.3
    • /
    • pp.109-116
    • /
    • 2004
  • This paper investigates the characteristics of deflection for circular plate that has same supporting boundary condition along the width direction of plate according to the length change of supporting end. For two boundary conditions such as simple supporting and clamping on both ends, this study derives maximum deflection formula of circular plate using differential equation of elastic curve, assuming that a circular plate is a beam with different widths along the longitudinal direction. The deflection formula of circular plate is verified by carrying out finite element analysis with regard to the ratio of length of supporting end to radius of circular plate.

Dynamic Characteristics of the Beam Axially Moving Over Multiple Elastic Supports (다수의 탄성지지대 위를 이동하는 보 구조물의 동특성 해석)

  • 김태형;이우식
    • Journal of the Korean Society for Railway
    • /
    • v.6 no.2
    • /
    • pp.129-134
    • /
    • 2003
  • This paper investigates the dynamic characteristics of a beam axially moving over multiple elastic supports. The spectral element matrix is derived first for the axially moving beam element and then it is used to formulate the spectral element matrix for the moving beam element with an interim elastic support. The moving speed dependance of the eigenvalues is numerically investigated by varying the applied axial tension and the stiffness of the elastic supports. Numerical results show that the fundamental eigenvalue vanishes first at the critical moving speed to generate the static instability.