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1. Introduction

Many problems dealing with the dynamic response of geotechnical structure involve the wave
propagation in semi-infinite domains. In that case, the numerical solution usually requires the
introduction of an artificial boundary in order to render the domain finite and this artificial
boundary must absorb the stress waves arriving at the boundary in order to simulate the
physical fact that the energy decreases as the wave travels outer domain. This phenomenon is
usually referred as radiation condition or geometric attenuation and it is distinguished from
material damping in which elastic energy is actually dissipated by viscous, hysteretic, or other
mechanism (Kramer 1996). Thus, it is required that the incident waves do not reflect back into
the numerical domain at the boundary and that the incident waves be transmitted freely through
the boundary for the case of dynamic excitation. This observation leads directly to the idea of
determining the dynamic response of the interior region from a finite model consisting of the
interior region subjected to a boundary condition, which ensures that all energy arriving at the
boundary is absorbed.

As one approach for seeking numerical solutions to this problem, the viscous boundary
conditions have been formulated by Lysmer and Kuhlemeyer (1969), which damp out the spurious
reflections. It has been shown that the level of absorption for traveling waves is in overall
satisfactory for a wide range of incident angles and is efficient enough for practical purposes
(Castellani 1974). In consequent research White et al. (1977) suggested a particular choice of
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parameters for the dashpot and showed that the amount of reflections can be reduced further.

In this paper, the visco-elastic infinite element described above is reviewed and implemented
in the recently developed OpenSees finite element code (OpenSees 2006) in which the Open
System for Earthquake Engineering Simulation (OpenSees) is a finite element software framework
for simulating the seismic response of structural and geotechnical systems developed by Pacific
Earthquake Engineering Research (PEER). The effectiveness of the dashpot to mitigate reflections
is addressed via comparison of example models created on unbounded and bounded domains. The
procedure to create the model geometry and to generate the mesh for OpenSees is coded in

Tcl/Tk script language and it is used to create the current models. Details on Tcl/Tk script is
found in Flynt (2003).

2. Viscous boundary condition

One of the simplest absorbing boundary oc=apv,®
elements is the one originally proposed by @ =90°
Lysmer & Kuhlemeyer (1969) and usually referred _D_> t=bpvu
as the classical viscous boundary condition. -
. : = vV, @
e R P LV
gle of incidence 0. '

| LI
In Lysmer's formulation, the complete
absorption of incidence wave is accomplished

by entering normal and tangential stresses

of the form Figure 1. Simple infinite visco-elastic dashpot

proposed by Lysmer & Kuhlemeyer (1969).
oc=apV,w (1)
r=bp ¥y @

where ¢ and T are the normal and shear stresses in the boundary, respectively; @ and U are
the normal and tangential velocities, respectively; p is the mass density; V, and V, are the
volumetric P-wave and distortional S—-wave velocities of soil, respectively, and defined by

-
ye) 3

in which G is the shear modulus and s is a coefficient defined in terms of Poisson's ratio p as
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2(-p) (5)

and a and b are dimensionless parameters. The parameters a and b are chosen to minimize the
reflected energy corresponding to an incident plane wave reaching the boundary at a given
angle of incidence. The parameter selection is considered separately for an incident
longitudinal wave, an incident transverse wave, and a surface wave. Lysmer & Kuhlemeyer
(1969) have shown that the viscous boundary defined with a=b=1 is very effective if the angle
of incidence i1s greater than 30 degree with absorbing 98% of P-waves and 95% of S-waves.
As shown in Figure 1, if the angle of incidence angle is perpendicular to the plane, the stress
that can be absorbed by the dashpot is equivalent to the stress produced by the incident wave
both in the parallel and normal directions.

White et al. (1977) proposed the following a and / values to maximize the absorption
efficiency at the boundary:

8
=——(5+25-2s"
a 15ﬂ_(+S s7) )

8
h=—
57 0F2%) 7

where s is given in Eq. (5). Thus, the viscous boundary parameters depend only on poisson's
ratio. It was shown that using these a and b parameters the absorption efficiency is slightly
increased for both P- and S-waves.

Even though the simple viscous boundary condition presented here vyields spurious
reflections in certain conditions such as in the case of a sharp incident angle, it has been
proven to be satisfactory and useful for most practical problems.

3. Numerical scheme in OpenSees

The advantage of using viscous boundaries to represent the absorbing condition is that it
can be simply coded in any numerical tool. In this particular work, the existing OpenSees
Zero-Length element was used to include the artificial boundary condition (Mazzoni, et al.
2005). The Zero-Length element is represented by two nodes defined with the same geometric
location (line 5 and 6 in Table 1). The nodes are connected through multiple UniaxialMaterial
(Simo & Hughes 1998) objects that represent the elemental force-deformation relationship.
Table 1 shows a simple example where a Zero-length element is used. The viscous damping
coefficients corresponding to the parallel and normal direction to boundary in which

Co=aply (8)

Cy=bpV, (9)
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are defined in line 1 and line 2. These coefficients are used to create the material object in

line 3 and 4. Then, the artificial element is defined using the material object and the
orientation.

Table 1. Example of Zero-Length element construction in OpenSees.

1. set DampP 93

2. set DampN 173

3. uniaxialMaterial Elastic 1 0 $DampP

4. uniaxialMaterial Elastic 2 0 $DampN

5. node 1 16.0 0.0

6. node 2 16.0 0.0

7. element zerolength 1 1 2 -mat 8 10 -dir 1 2

element absorbs the incident

This elastic energy through the force-displacement
relationship shown in Figure 1. The degree of absorption is governed by Cp and Cn
defined in terms of the material properties given to the interior region.

It's a little complicated to formulate this boundary element within a soil domain in OpenSees

since the "so called preprocessing" procedure to generate the mesh for a plane problem is not
defined in OpenSees. Thus,

which are

a Tcl routine, which creates the input file for OpenSees, was
developed by the author and it is found in http://www.ce.washington.edu/~geotech/opensees.

4. Implementation Vicous boundary infinite model

To examine the effectiveness of the viscous boundary and to demonstrate that it can be
easily included in OpenSees, two models were used to analyze a semi-infinite domain. The
response of each model using fixed and viscous boundaries, respectively,
model properties are given in Table 2.

is compared. The

Table 2. Material properties of example models.

p Vs Vp E Cp Cn
u
t/m® m/sec m/sec EN/m? t/misec t/misec
1.6 58 108 14000 0.3 93 173

As a first verification case a rectangular domain was selected as shown in Fig. 2. By
forcing the nodes on the left side boundary to behave in a same way as the right nodes, the
one-dimensional wave propagating condition was achieved by use of the OpenSees command
"equalDOF". The fixed and transmitting boundaries were applied along the base and sides of
the model. A pulse load defined using sine and rectangular loading patterns allows examine
how waves reflect at the boundary. Figure 3 compares the vertical displacement at the top and
middle nodes for the fixed and transmitting boundary conditions. The reflection occurs in the
fixed case, but it disappears when the transmitting boundary is used.
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Figure 2. (a) One-dimensional model and (b) loading condition.
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Figure 3. Vertical displacement at the top and midddle nodes for
one—dimensional model : (a) top node of transmitting boundary, (b) top

node of fixed boundary, (c) middle node of transmitting boundary, and
(d) middle node of fixed boundary.

As a second verification example, a more realistic two-dimensional model was simulated.
Figure 4 shows the geometry and loading condition. As in the previous example, the fixed and
transmitting boundaries were used along the base and sides of the model. The response shown

in Fig. 5 indicates that the transmitting boundary absorbs the incident waves satisfactory while
the fixed boundary generates spurious reflections.

5. conclusions

The primary objective of this study was to demonstrate the capabilities of OpenSees to
simulate a semi-infinite domain for geotechnical purposes. A simple viscous dashpot was
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Figure 4. (a) Two-dimensional model and (b) loading condition.

(b) Fixed boundary (a) Transmitting boundary
0.15 1

0.15

Reflection

No reflection

u, (m)
o

0 0.5 1.0

-0.15 -0.15

(d) Fixed boundary (c) Transmitting boundary
0.15 0.15

Reflection

M /
g; 0 No reflection o
= =

——— Middle Node - Middle Node

-0.15 — -0.15
0 0.5 1.0 0 0.5 1.0

, (m)

Figure 5. Vertical displacement at the top and midddle nodes for
two~dimensional model : (a) top node of transmitting boundary, (b) top
node of fixed boundary, (c) middle node of transmitting boundary, and
(d) middle node of fixed boundary.

implemented to consider geometric attenuation. One-~ and two-dimensional models were
simulated using OpenSees. The comparison made using fixed and transmitting boundaries shows
visco-elastic transmitting element provides a method to simulate the semi-infinite domain
within OpenSees program. The advantages of the viscous boundary type are that (1) it can be
easily included into finite element code, OpenSeces (2) it absorbs the incident wave satisfactory
for most practical purposes. ’
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