• Title/Summary/Keyword: 탄성휨

Search Result 348, Processing Time 0.023 seconds

Dynamic Behavior of 2D 8-Story Unbraced Steel Frame with Partially Restrained Composite Connection (합성반강접 접합부를 갖는 2차원 8층 비가새 철골골조의 동적거동)

  • Kang, Suk Bong;Lee, Kyung Taek
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.5
    • /
    • pp.503-513
    • /
    • 2007
  • The seismic responses of a building are affected by the connection characteristics that have effects on structural stiffness. In this study, push-over analysis and time history analysis were performed to estimate structural behavior of 2D eight-story unbraced steel structures with partially restrained composite connections using a nonlinear dynamic analysis program. Nonlinear $M-{\theta}$characteristics of connection and material inelastic characteristics of composite beam and steel column were considered. The idealization of composite semi-rigid connection as fully rigid connection yielded an increase in initial stiffness and ultimate strength in the push-over analysis. In time history analysis, the stiffness and hysteretic behavior of connections have effects on base-shear force, maximum story-drift and maximum moment in beams and columns. For seismic waves with PGA of 0.4 g, the structure with the semi-rigid composite connections shows the maximum story-drift with less than the life safety criteria by FEMA 273 and no inelastic behavior of beam and column, whereas in the structure with rigid connections, beams and columns have experienced inelastic behaviors.

A General and Versatile XFINAS 4-node Co-Rotational Resultant Shell Element for Large Deformation Inelastic Analysis of Structures (구조물의 대변형 비탄성 해석을 위한 범용 목적의 XFINAS 4절점 순수 변위 합응력 쉘요소)

  • Kim, Ki Du;Lee, Chang Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3A
    • /
    • pp.447-455
    • /
    • 2006
  • A general purpose of 4-node co-rotational resultant shell element is developed for the solution of nonlinear problems of reinforced concrete, steel and fiber-reinforced composite structures. The formulation of the geometrical stiffness presented here is defined on the mid-surface by using the second order kinematic relations and is efficient for analyzing thick plates and shells by incorporating bending moment and transverse shear resultant forces. The present element is free of shear locking behavior by using the ANS (Assumed Natural Strain) method such that the element performs very well as thin shells. Inelastic behaviour of concrete material is based on the plasticity with strain hardening and elasto-plastic fracture model. The plasticity of steel is based on Von-Mises Yield and Ivanov Yield criteria with strain hardening. The transverse shear stiffness of laminate composite is defined by an equilibrium approach instead of using the shear correction factor. The proposed formulation is computationally efficient and versitile for most civil engineering application and the test results showed good agreement.

An Optimum Design of Steel Frames by Second Order Elastic Analysis (2차 탄성해석법에 의한 강뼈대 구조물의 최적설계)

  • Park, Moon-Ho;Jang, Chun-Ho;Kim, Ki-Wook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.2
    • /
    • pp.123-133
    • /
    • 2006
  • The main objective of this study is to develop an optimization algorithm of framed structures with rigid and various semi-rigid connections using the multilevel dynamic programming and the sequential unconstrained minimization techniques (SUMT). The second-order elastic analysis is performed for steel framed structures. The second order elastic analysis is developed based on nonlinear beam-column theory considering the bowing effect. The following semi-rigid connections are considered; double web angle, top-seat angle and top-seat angle with web angle. We considered the three connection models, such as modified exponential, polynomial and three parameter model. The total weight of the structural steel is used as the objective function in the optimization process. The dimensions of steel cross section are selected as the design variables. The design constraints consist of strength requirements for axial, shear and flexural resistance and serviceability requirements.

A Study on Fracture Behavior for FRP Composite Girder Filled with Concrete (콘크리트를 충진한 FRP 합성 거더의 파괴 거동에 관한 연구)

  • Kwak, Kae-Hwan;Chung, Sang-Mo;Sung, Bai-Kyung;Jang, Hwa-Sup
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.1
    • /
    • pp.59-66
    • /
    • 2008
  • This study is about manufacturing and producing girder, which is an essential component of bridge structure, in a composite of FRP + concrete. This has a higher competitive power in price than steel girder. The girder used in this study is made of glass fiber which has a lower elastic modulus than steel and thus has some technical limitations such as excessive deflection compared to steel girder and lack of production facilities in FRP production companies to make a large-section component material. Thus, this study suggested a section of a new module that will allow for applying a large section in order to solve the technical difficulties mentioned above and to secure low stiffness of FRP, developed a new FRP+concrete composite girder that is filled with the appropriate amount of concrete. To identify the structural behavior of this FRP+concrete composite girder, experiments were conducted to measure its flexural strength according to the difference in the strength of confined concrete and the existence of stud. The results of the flexural strength test confirmed the composite effect from confining concrete and the effect of increase in strength proportional to the strength of concrete. In developing FRP+concrete composite girder, NDT study was also conducted to analyze the interface characteristics of concrete and FRP.

Warpage of Flexible OLED under High Temperature Reliability Test (고온 신뢰성 시험에서 발생된 플렉서블 OLED의 휨 변형)

  • Lee, Mi-Kyoung;Suh, Il-Woong;Jung, Hoon-Sun;Lee, Jung-Hoon;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.1
    • /
    • pp.17-22
    • /
    • 2016
  • Flexible organic light-emitting diode (OLED) devices consist of multi-stacked thin films or layers comprising organic and inorganic materials. Due to thermal coefficient mismatch of the multi-layer films, warpage of the flexible OLED is generated during high temperature process of each layer. This warpage will create the critical issues for next production process, consequently lowering the production yield and reliability of the flexible OLED. In this study, we investigate the warpage behavior of the flexible OLED for each bonding process step of the multi-layer films using the experimental and numerical analysis. It is found that the polarizer film and barrier film show significant impact on warpage of flexible OLED, while the impact of the OCA film on warpage is negligible. The material that has the most dominant impact on the warpage is a plastic cover. In order to minimize the warpage of the flexible OLED, we estimate the optimal material properties of the plastic cover using design of experiment. It is found that the warpage of the flexible OLED is reduced to less than 1 mm using a cover plastic of optimized properties which are the elastic modulus of 4.2 GPa and thermal expansion coefficient of $20ppm/^{\circ}C$.

Material Properties of Polymer-Impregnated Concrete and Nonlinear Fracture Analysis of Flexural Members (폴리머 침투콘크리트의 재료특성과 휨부재의 비선형 파괴해석)

  • 변근주;이상민;최홍식;노병철
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.2
    • /
    • pp.97-107
    • /
    • 1994
  • The objective of this study is to develop polymer-impregnated concrete(PIC), which is a newly developed composite material made by impregnating polymer impregnanls into hardened normal concrete, and to develop analytical techniques for its proper applications. Crystalline methyl methacrylate(MMA) is chosen as a monomer of polymer impregnants. The corrlpositions of polymer impregnants and producing processes are developed by analyzing the effects of penetration, polymerization, thermal safety, and strengthening characteristics. On t he basis of experimental results of this study, various strength characteristics and stress strain constitutive relations are formulated in terms of the compressive strength of normal concrete and the polymer loadings, which can be applied for analysis and design of PIC members. In order to provide a model for fracture analysis of flexural members, fracture toughness, fracture energy, critical crack width, and tension softening relations near crack tip are also formulated in terms of member depth, initial notch depth, and the flexural strength of normal concrete. The structural analysis procedure and the finite element computer program developed in the study are applicable to evaluate elastic behavior, ultimate strength, and tension softening behavior of MMA type PIC structural members subject to various loading conditions. The accuracy and effectiveness of the developed computer program is examined by comparing the anal ytical results with the experimental results. Therefore, it is concluded that the developed structural analysis procedure and the finite element computer program are applicable to analysis and design of in-situ and precast PIC structural members.

Cyclic Local Buckling Behavior of Steel Members with Web Opening (유공 강구조 부재의 반복 국부좌굴거동)

  • Lee, EunTaik;Ko, KaYeon;Kang, JaeHoon;Chang, KyoungHo
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.4 s.65
    • /
    • pp.423-433
    • /
    • 2003
  • Many study have been performed to describe the elastic and inelastic behavior of H-shaped beams with web openings that generally concentrated on the monotonic loading condition and concentric web opening. The findings of the studies led Darwin to propose formulas for the design of beams with web openings considering local buckling. While the formulas are simple and useful in real situation, more studies arc needed on their cyclic loading condition. In this experimental study, 12 H-shaped beams with web openings under cyclic loading condition were investigated. The dimension criteria based on the formulas proposed by Darwin were examined. The suitability of existing design formulas and the effects of plastic hinges on beams with web openings and of local buckling around web openings on the beam strength under cyclic loading were also studied. This was done by observing their behavior with various dimensional openings, eccentric per cent, and stiffeners.

Engineering Properties of Permeable Polymer Concrete with CaCO3 and Stone Dust (CaCO3와 석분을 혼입한 투수용 폴리머 콘크리트의 공학적 성질)

  • Sung, Chan Yong;Song, Young Jin;Jung, Hyun Jung
    • Korean Journal of Agricultural Science
    • /
    • v.23 no.1
    • /
    • pp.61-69
    • /
    • 1996
  • This study was performed to evaluate the engineering properties of permeable polymer concrete with fillers and unsaturated polyester resin. The following conclusions were drawn. 1. The highest strength was achieved by stone dust filled permeable polymer concrete, it was increased 17% by compressive, 148% by tensile and 188% by bending strength than that of the normal cement concrete, respectively. 2. The static modulus of elasticity was in the range of $1.17{\times}10^5{\sim}1.32{\times}10^5kg/cm^2$, which was approximately 53~56% of that of the normal cement concrete. Stone dust filled permeable polymer concrete was showed relatively higher elastic modulus. The poisson's number of permeable polymer concrete was less than that of the normal cement concrete. 3. The dynamic modulus of elasticity was in the range of $1.3{\times}10^5{\sim}1.5{\times}10^5kg/cm^2$, which was approximately less compared to that of the normal cement concrete. Stone dust filled permeable polymer concrete was showed higher dynamic modulus. The dynamic modulus of elasticity were increased approximately 10~13% than that of the static modulus. 4. The water permeability was in the range of $3.076{\sim}4.390{\ell}/cm^2/h$, and it was largely dependent upon the mix design. These concrete can be used to the structures which need water permeability. 5. The compressive strength, tensile strength, bending strength and elastic modulus were largely showed with the decrease of water permeability.

  • PDF

Mechanical Properties of Strain Hardening Cement-Based Composite (SHCC) with Recycled Materials (자원순환형 재료를 사용한 변형경화형 시멘트 복합체(SHCC)의 역학적 특성)

  • Kim, Sun-Woo;Cha, Jun-Ho;Kim, Yun-Yong;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.5
    • /
    • pp.727-736
    • /
    • 2010
  • This paper describes results of an preliminary study to produce strain hardening cement-based composites (SHCCs)with consideration of sustainability for infrastructure applications. The aims of this study are to evaluate the influence of recycled materials on the mechanical characteristics of SHCCs, such as compressive, four-point bending, and direct tensile behaviors, and to give basic data for constitutive model for analyzing and designing infra structures with SHCCs. In this study, silica sand, cement, and PVA fibers, were partially replaced with recycled sand, fly-ash, and FET fibers in the mixture of SHCCs, respectively. Test results indicated that fly-ash could improve both bending and direct tensile performance of SHCCs due to increasing chemical bond strength at the interface between PVA fibers and cement matrices. However, SHCCs replaced with PET fibers showed much lower performance in bending and direct tensile tests due to originally low mechanical properties of own fibers, although compressive behavior is similar to PVA2.0 specimen. Also, it was noted that the recycled sand would increase elastic modulus of SHCCs due to larger grain size compared to silica sand. Based on pre-set target value to maintain the performance of SHCCs, it was concluded that the replacement ratio below 20% of fly-ash or below 50% of recycled sands would be desirable for creating sustainable SHCCs.

Behavior of Wide Beam-Column Interior Joint with Slab (횡력을 받는 넓은 보-기둥 내부 접합부의 거동 평가)

  • Lee, Bum-Sik;Park, Seong-Sik;Park, Ji-Young
    • Land and Housing Review
    • /
    • v.3 no.4
    • /
    • pp.433-449
    • /
    • 2012
  • An experimental investigation was conducted to study the behavior of RC wide beam-column joints with slab subjected to reversed cyclic loads under constant axial load. Six half scale interior wide beam-column assemblies representing a portion of a frame subjected to simulated seismic loading were tested, including three specimens without slab and three specimens with slab. The primary variables were the ratio of column-to-beam flexural capacity ($M_r={\Sigma}M_c/{\Sigma}M_b$ ; 0.77~2.26), ratio of the column-to-beam width (b/H ; 1.54, 1.67). Test results are shown that (1) the current design code and practice for interior joints(type 2) are apply to the wide beam-high strength concrete column. (2) the presence of a slab have an effect on the performance of the wide beam-high strength concrete column interior joints(type 2). therefore in the design of the wide beam-high strength concrete column interior joints(type 2), the width of slab effective as a T beam flange should be considered. It was show that the case of the ratio of column-to-beam flexural capacity is more than 2.0, the effective width of slab are 2 times of an effective depth of wide beam, however if the ratio of column-to-beam flexural capacity is 1.4~2.0, the effective width of slab are not able to be considered.