• Title/Summary/Keyword: 탄성판

Search Result 371, Processing Time 0.032 seconds

Biaxial buckling analysis of sigmoid functionally graded material nano-scale plates using the nonlocal elaticity theory (비국소 탄성이론을 이용한 S형상 점진기능재료 나노-스케일 판의 이축 좌굴해석)

  • Lee, Won-Hong;Han, Sung-Cheon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.11
    • /
    • pp.5930-5938
    • /
    • 2013
  • The sigmoid functionally graded mateiral(S-FGM) theory is reformulated using the nonlocal elatictiry of Erigen. The equation of equilibrium of the nonlocal elasticity are derived. This theory has ability to capture the both small scale effects and sigmoid function in terms of the volume fraction of the constituents for material properties through the plate thickness. Navier's method has been used to solve the governing equations for all edges simply supported boundary conditions. Numerical solutions of biaxial buckling of nano-scale plates are presented using this theory to illustrate the effects of nonlocal theory and power law index of sigmoid function on buckling load. The relations between nonlocal and local theories are discussed by numerical results. Further, effects of (i) power law index, (ii) length, (iii) nonlocal parameter, (iv) aspect ratio and (v) mode number on nondimensional biaxial buckling load are studied. To validate the present solutions, the reference solutions are discussed.

Buckling Analysis of Inelastic Steel Members (비탄성 강재 부재의 좌굴 해석)

  • Gil, Heung-Bae
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.1 s.44
    • /
    • pp.29-43
    • /
    • 2000
  • In this study, the computationally efficient inelastic buckling analysis program is developed to be used as the research tool in finding buckling strength of inelastic members. The program can determine buckling loads and buckled shapes of elastic and inelastic members which failed by flexural, lateral-torsional and/or local buckling. It can analyze singly and doubly symmetric I-shape members. In the program, the web of the member is modeled using the plate element and the flanges are modeled by beam elements. Multilinear isotropic hardening rule and the incremental theory of plasticity are used to simulate the inelastic stress-strain relationship from material tests. The program is verified using theoretical solutions and experimental results. The results from the program show good agreement with those from experiments and theory.

  • PDF

$\cdot$북 Bismarck plate와 PACMANUS 열수에서의 천부지각 구조

  • 홍종국;이상묵
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.176-181
    • /
    • 2004
  • ${\cdot}$북 Bismarck 판은 호주판과 태평양 판 사이의 복잡한 판구조를 보이는 지역에 위치한다. 남${\cdot}$북 Bismarck 판 내부에서는 판구조 활동이 활발하게 일어나 지진의 발생빈도가 높고 활성 및 비활성화산이 많이 존재한다. 한국해양연구원은 Bismarck 해의 서부지역과 동 Manus 분지에서 판 경계부의 구조 및 열수구조의 밝히기 위하여 탄성파 탐사를 수행하였다. 탐사결과에 의하면 남${\cdot}$북 Bismarck 판의 경계부에는 주향이동단층대가 발달되어 있으며 이는 판의 경계를 나타내고 있다. PACMANUS 열수하부에는 돔 형태의 구조가 존재하며 이는 마그마 또는 이의 분화과정에서 형성된 지질학적인 구조로 추정된다.

  • PDF

A Method of Contact Pressure Analysis between Half-space and Plate (탄성지반과 판의 접촉압력해석에 관한 연구)

  • Cho, Hyun Yung;Cheung, Jin Hwan;Kim, Seong Do;Han, Choong Mok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.1
    • /
    • pp.1-8
    • /
    • 1992
  • A method analizing contact pressure between plate and elastic half space is presented by using F.E.M. With the method, the pressure intensities at surface nodes of half space cae be directly calculated by using flexibility matrix of half space. The method is originally presented by Y.K. Cheung et al.(3) Insted of Y.K. Cheung's method, which use a conception of equi-contact pressure area around each surface nodes of half space in the noded rectanqular element area. We use the equi-contact pressure area around the Gaussian integration points of half space surface in the noded isoparametric element area. Numarical examples are presented and compared with other's studies.

  • PDF

Flexural Analysis of Radiata Pine Plywood Plate for the Concrete Form by the Laminate Plate Theory (적층판이론을 적용한 Radiata Pine 콘크리트 거푸집용 합판의 휨해석)

  • Nam, Jeong-Hun;Son, Kyong-Wook;Yoon, Soon-Jong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.4
    • /
    • pp.36-45
    • /
    • 2004
  • The plywood for concrete form is regarded as a laminate plate composed of orthotropic materials and the flexural analysis is conducted by applying the laminate plate theory, in which the four edges of the plate is assumed to be simply supported and the concentric point lateral load is applied. The results of flexural experiment are compared with the theoretical ones. Theoretically predicted results coincide with experimental ones up to the point of deflection less than 1/4 of plate thickness. In addition, when the plywood is regarded as an isotropic plate for simple analysis, the geometric average of the elastic modulus measured in the direction parallel to the face grain (E11) and perpendicular to the face grain (E22) could be used for the elastic modulus of isotropic plate.

A Study on the Passive Vibration Control of Large Scale Solar Array with High Damping Yoke Structure (고댐핑 요크 구조 적용 대형 태양전지판의 수동형 제진에 관한 연구)

  • Park, Jae-Hyeon;Park, Yeon-Hyeok;Park, Sung-Woo;Kang, Soo-Jin;Oh, Hyun-Ung
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.5
    • /
    • pp.1-7
    • /
    • 2022
  • Recently, satellites equipped with high-performance electronics have required higher power consumption because of the advancement of satellite missions. For this reason, the size of the solar panel is gradually increasing to meet the required power budget. Increasing the size and weight of the solar panel is one of the factors that induce the elastic vibration of the flexible solar panel during the highly agile maneuvering of the satellite or the mode of vibration coupling to the satellite or the mode of vibration coupling to the micro-jitter from the on-board appendages. Previously, an additional damper system was applied to reduce the elastic vibration of the solar panel, but the increase in size and mass of system was inevitable. In this study, to overcome the abovementioned limitations, we proposed a high -damping yoke structure consisting of a superplastic SMA(Shape Memory Alloy) laminating a thin FR4 layer with viscoelastic tape on both sides. Therefore, this advantage contributes to system simplicity by reducing vibrations with small volume and mass without additional system. The effectiveness of the proposed superelastic SMA multilayer solar panel yoke was validated through free vibration testing and temperature testing using a solar panel dummy.

Effects of flange and web slenderness ratios on elastic flange local buckling of doubly symmetric I-girders (이축 대칭 I형 거더의 플랜지 탄성좌굴에 대한 플랜지와 복부판 세장비의 영향)

  • Lee, Jeong-Hwa;Lee, Kee-Sei;Byun, Nam-Joo;Kang, Young-Jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.8
    • /
    • pp.456-464
    • /
    • 2016
  • Increasing the strength of structural materials allows their self-weight to be reduced and this, in turn, enables the structures to satisfy esthetic requirements. The yield strength of high-performance steel is almost 480 MPa, which is approximately 50% higher than that of general structural steel. The use of high strength materials, however, makes the sections more slender, which can potentially result in significant local stability problems. The strength of slender element sections might be governed by their elastic buckling behavior, and the elastic buckling strength is very sensitive to the boundary conditions. Because the web provides the boundary conditions of the compressive thin-flange, the stiffness of the web can affect the elastic buckling strength of the flange. In this study, therefore, the effects of the flange and web slenderness ratios on the elastic flange local buckling of I-girders subjected to a pure bending moment were evaluated by finite element analysis (FEA). The analysis results show that the elastic local buckling strength and buckling modes were affected not only by the web support conditions, but also by the flange and web slenderness ratios.

Vibration Analysis of Special Orthotropic Plates on Elastic Foundation with Arbitrary Boundaries (자유경계를 갖고 탄성기초에 놓인 특별직교이방성 적층복합판의 진동해석)

  • 김덕현;이정호;홍창우;심도식
    • Composites Research
    • /
    • v.12 no.4
    • /
    • pp.25-32
    • /
    • 1999
  • A method of calculating the natural frequency corresponding to the first mode of vibration of beams and tower structures, with irregular cross sections and with arbitrary boundary conditions was developed and reported by Kim, D. H. in 1974. In this paper, the result of application of this method to the special orthotropic plates on elastic foundation with free boundaries is presented. Such plates represent the concrete highway slab and hybrid composite pavement on bridges. Any method may be used to obtain the deflection influence surfaces needed for this vibration analysis. Finite difference method is used for this purpose, in this paper. The influence of the modulus of the foundation and the aspect ratio of the plate on the natural frequency is thoroughly studied. The effect of neglecting the mass of the plates on the natural frequency, as the ratio of the point mass/masses to the plate mass increases, is also studied, in deep.

  • PDF

Elastic Buckling Strength of Orthotropic Plate under Combined In-Plane Shear and Bending Forces (면내 전단력과 휨을 동시에 받는 직교이방성판의 탄성좌굴강도)

  • 윤순종;박봉현;정상균
    • Composites Research
    • /
    • v.12 no.2
    • /
    • pp.46-52
    • /
    • 1999
  • In this paper result of an analytical investigation pertaining to the elastic buckling behavior of orthotropic plate under combined in-plane shear and bending forces is presented. The existing analytical solution developed for the isotropic plates is extended so that the orthotropic material properties can be taken into account in the buckling analysis of web plate. For the solution of the problems Rayleigh-Ritz method is employed. Graphical form of results for finding the elastic buckling strength of orthotropic plate under combined in-plane shear and bending forces is presented. Brief discussion on the design criteria for the shear and bending interaction is also presented.

  • PDF

On the isostasy and effective elastic thicness of the lithosphere in southern prt of the Korean Peninsula (한반도 남부 지각평형과 암석권의 유효탄성두께)

  • Choi, Kwang-Sun;Kim, Jeong-Hee;Shin, Young-Hong
    • Journal of the Korean Geophysical Society
    • /
    • v.5 no.4
    • /
    • pp.293-303
    • /
    • 2002
  • Applying elastic plate model, we estimated elastic thickness and rigidity of the lithosphere in southern part of the Korean Peninsula($332km{\times}332km$ area of which center is $36.5^{\circ}N$ in latitude and $127.5^{\circ}E$ in longitude) by analysing terrain data and gravity data measured up to 2002. We tried to exclude the East Sea in choosing the study area because it has different tectonic environment. The mean Moho depth was estimated to be 30 km by power spectrum analysis of gravity data in the study area, Assuming one layer crust and applying elastic plate model, the loads with wavelengths of greater than 300 km are locally compensated, loads with wavelengths in the range 80-300km are partially supported by the strength of the lithosphere, and loads with wavelengths of less than 80km are almost completely supported by lithospheric strength. Assuming crustal model and rigidity, we calculated predicted coherence and compared it with observed coherence. As a result, we wert able to estimate the effective elastic thickness to be of 15 km(corresponding flexural rigidity is $3.0{\times}10^{22}Nm$). This indicates that the crust of the study area is relatively weaker than other old and stable continental regions but is similar to continental margins or oceanic area. The low rigidity could be explained by many tectonic and thermal activities such as orogenic activities, magmatic intrusions, volcanic activities, foldings, faultings, etc.

  • PDF