• Title/Summary/Keyword: 탄성비

Search Result 2,446, Processing Time 0.028 seconds

Direct Inelastic Design for Steel Structures (강구조를 위한 직접비탄성설계법)

  • Eom, Tae Sung;Park, Hong Gun
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.2 s.69
    • /
    • pp.181-190
    • /
    • 2004
  • A new inelastic design method performing iterative calculations using secant stiffness was developed. Since the proposed design method uses linear analysis, it is convenient and stable in numerical analysis. At the same time, the proposed design method can accurately estimate the inelastic strength and ductility demands of the members by performing iterative calculation. In the present study, the procedure of the proposed design method was established. Design examples using the proposed method were presented, and its advantages were highlighted by comparisons with existing design methods using elastic or plastic analysis. Unlike the existing inelastic design methods performing the preliminary design on the structure and checking its validity using nonlinear analysis, the proposed integrated analysis-design method can directly calculate the strength and ductility demands of each member. In addition, the proposed design method can address the inelastic design strategy intended by the engineer, such as strength and ductility limits of members and the design concept of strong-column and weak-beam. As a result, economical and safe design can be achieved.

Change of physical property on PET and PTT yarn after heat treatment (PET와 PTT사의 열처리후 물성변화)

  • 김일래;김광수
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.04a
    • /
    • pp.337-338
    • /
    • 2003
  • PTT(poly trimethylene terephthalate)섬유는 PET(polyethylene terephthalate)섬유에 비하여 탄성 (elasticity)가 우수하고 염색성이 PET와 유사한 점에서 차세대섬유로 분류되고 있다. 분자의 구조가 trans-trans의 fully extended chain(rod shape)형태인 PET에 비하여 trans-gauche-gauche-trans의 스프링과 같은 extended zigzag(helix shape)이어서 탄성회복성이 우수하다. 또한 PTT의 탄성계수값은 PET에 비하여 $\frac{1}{2}$정도이다. 의복을 착용중 신장과 수축을 반복하는 과정에서 섬유는 탄성을 점차 상실하게 되는데, 이 응력완화의 변화특성에 따라서 착용감이 영향을 끼친다. (중략)

  • PDF

물체의 충돌 시 탄성파에 의한 질량중심의 이동 효과에 대한 해석

  • 정병태
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2000.11a
    • /
    • pp.353-356
    • /
    • 2000
  • 두 물체의 충격운동량-충격 및 탄성파 발생의 순으로 작용하도록 하면 계 내에서 충돌 후 생기는 운동량의 관성 속도와 충돌기간동안 발생하는 탄성파의 충격에너지 전달속도가 다른 경우가 있다. 이것은 충돌기간동안 총 운동량은 보존되나 선 운동량이 비 보존되는 경우가 있어서 충돌기간동안 비 보존된 내부 운동량의 시간 적분만큼 충돌을 가한 질량중심이 이동했다는 의미이다. 충돌기간동안 충격파는 탄성파에 근사시키고 그것은 군속도에 근사시켜 이론적 근거를 만들고 실험에 의해 확인했다. 폐쇄된 계 내에서 내부에너지를 이용하여 특별한 두 물체의 충돌기간동안 비 보존되는 운동량 때문에 질량중심이 이동되는 것에 대해 해석한다.

  • PDF

Comparative Evaluation of Formulas of Strength Reduction Factors for the Generation of an Inelastic Demand Spectrum (비탄성요구스펙트럼의 작성을 위한 강도감소계수 공식의 비교 평가)

  • Cho, Sung-Gook;Park, Woong-Ki;Joe, Yang-Hee
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.6
    • /
    • pp.33-44
    • /
    • 2011
  • The shape of an inelastic demand spectrum may have a major impact on the seismic evaluation results of a structure. The inelastic demand spectrum could be obtained by scaling down from the elastic response spectrum by applying the strength reduction factor (SRF). This study has investigated formulas for SRFs that were suggested by numerous previous studies. This paper compares their characteristics, including the shapes of the curves of the SRFs and the inelastic demand spectra that were produced by applying the various formulas for SRFs. The mean curve was computed from the SRF curves generated by the various formulas. This study derives a new formula for the SRF curve through regression analysis. From the comparative study, it is shown that the proposed formula for the SRF can generate the mean curve of the inelastic demand spectra which have been previously suggested by others.

Evaluation of the Usefulness of Differential Diagnosis of Thyroid Nodules using Elasticity Score and Strain Ratio in Elastogpraphy (탄성초음파에서 갑상샘 결절의 감별진단을 위한 탄성도 점수와 변형비의 유용성 평가)

  • Lee, Jin-Soo;Yang, Sung-Hee;Kim, changsoo;An, Hyun
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.4
    • /
    • pp.227-234
    • /
    • 2017
  • This study evaluated the usefulness of the elasticity score and strain ratio in the differential diagnosis of benign and malignant nodules in thyroid elastography. We performed a retrospective analysis based on the results of fine needle aspiration cytology. The Chi-square test and the Mann-Whitney U test were used to analyze the difference between the five degrees of elasticity score and strain ratio according to the benign and malignant thyroid nodules. ROC curve analysis was used to determine the elasticity score and the best cut-off value of the strain ratio for the prediction of malignant nodules. There was a statistically significant difference (p=0.000) between the homogeneity of the elasticity score and the difference of the strain ratio between the benign and malignant nodule groups. On the ROC curve analysis, the elasticity score and the srain ratio for predicting benign and malignant nodules were determined as AUC 0.842, 0.700, cut-off value 3, 2.49 (p=0.001). Therefore, the elasticity score and strain ratio may be useful in the differential diagnosis of thyroid nodules.

Application of a Fictitious Axial Force Factor to Determine Elastic and Inelastic Effective Lengths for Column Members of Steel Frames (강프레임 기둥 부재의 탄성 및 비탄성 유효좌굴길이 산정을 위한 가상축력계수의 적용)

  • Choi, Dong Ho;Yoo, Hoon;Lee, Yoon Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2A
    • /
    • pp.81-92
    • /
    • 2010
  • In design of steel frames, it is generally believed that elastic system buckling analysis cannot predict real behaviors of structures, while inelastic system buckling analysis can give informative buckling behaviors of individual members considering inelastic material behavior. However, the use of Euler buckling equation with these system buckling analyses have the inherent problem that the methods evaluate unexpectedly large effective lengths of members having relatively small axial forces. This paper proposes a new method of obtaining elastic and inelastic effective lengths of all members in steel frames. Considering a fictitious axial force factor for each story of frames, the proposed method determines the effective lengths using the inelastic stiffness reduction factor and the iterative eigenvalue analysis. In order to verify the validity of the proposed method, the effective lengths of example frames by the proposed method were compared to those of previously established methods. As a result, the proposed method gives reasonable effective lengths of all members in steel frames. The effect of inelastic material behavior on the effective lengths of members was also discussed.

Inelastic Displacement Ratio for Strength-limited Bilinear SDF Systems (강도한계 이선형 단자유도 시스템의 비탄성 변위비)

  • Han, Sang-Whan;Lee, Tae-Sub;Seok, Seung-Wook
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.23-28
    • /
    • 2010
  • This study evaluated the effect of vibration, level of lateral yielding strength, site conditions, ductility factor, strain-hardening ratio, and post-capping ratio of the strength limited bilinear SDF systems on the inelastic displacement ratio. The nonlinear response history analysis was conducted using 240 ground motions which were collected at the sites classified as site classes B, C, and D according to the NEHRP. To account for the P-$\Delta$ effects, this study considered negative stiffness ratios ranging from -0.1 to -0.5 of elastic stiffness. Four different damping ratios are used: 2, 5, 10, and 20%. From this study, an equation of inelastic displacement ratio was proposed using nonlinear regression analysis.

Comparison Study of Elastic Catenary and Elastic Parabolic Cable Elements for Nonlinear Analysis of Cable-Supported Bridges (케이블교량의 비선형해석을 위한 탄성현수선 및 탄성포물선 케이블요소의 비교연구)

  • Song, Yo Han;Kim, Moon Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.5A
    • /
    • pp.361-367
    • /
    • 2011
  • This study introduces an elastic parabolic cable element for initial shaping analysis of cable-supported structures. First, an elastic catenary cable theory is shortly summarized by deriving the compatibility condition and the tangent stiffness matrices of the elastic catenary cable element. Next, the force-deformation relations and the tangent stiffness matrices of the elastic parabolic cable elements are derived and discussed under the assumption that sag configuration under self-weights is small. In addition the equivalent cable tension is defined in the chord-wise direction. Finally, to demonstrate the accuracy of the elastic parabolic cable element, nonlinear relationships of nominal cable tension-chord length and nominal cable tension-tangential stiffness for a single element are presented and compared with results using an elastic catenary cable theory as the slope is varied.

Determination of Effective Buckling Length of Plane Frames using Elastic and Inelastic System Buckling Analysis (탄성 및 비탄성 좌굴 고유치해석을 이용한 강뼈대구조의 유효좌굴길이)

  • Song, Ju-Young;Kyung, Yong-Soo;Kim, Moon-Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.2
    • /
    • pp.169-179
    • /
    • 2005
  • An improved method for evaluating effective buckling lengths of beam-column members in plane frames is newly proposed based on system inelastic buckling analysis. To this end, the tangent stiffness matrix of be am-column elements is first calculated using stability functions and then the inelastic buckling analysis method is presented. The scheme for determining effective length of individual members is also addressed. Design examples and numerical results ?uc presented to show the validity of the proposed method.

Papers : Snap - through Phenomena on Nonlinear Thermopiezoelastic Behavior of Piezolaminated Plates (논문 : 압전적층판의 비선형 열압전탄성 거동에서의 스냅 - 스루 현상)

  • O,Il-Gwon;Sin,Won-Ho;Lee,In
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.1
    • /
    • pp.36-43
    • /
    • 2002
  • Thermopiezoelastic snap-through phenomena of piezolaminated plates are investigated by applying an are-length scheme to Newton-Raphson method. Based on the layerwise displacement theory and von Karman strain-displacement relationships, nonlinear finite element formulations are derived for the thermopiezoelastic composite plates. From the static and dynamic viewpoint, nonlinear thermopierzoelastic behavior and vibration characteristicx are stuied for symmetric and eccentric structural models with various piezoelestric actuation modes. Present results show the possibility to enhance the performance, namely thermopiezoelastic snapping, induced by the excessive piezoelectric actuation in the active suppression of thermally buckled large deflection piezolaminated paltes.