• Title/Summary/Keyword: 탄산

Search Result 2,177, Processing Time 0.03 seconds

Change in the Textural Properties of Fresh Ginseng after Its Immersion in a Calcium Carbonate Solution (수삼의 탄산칼슘용액 침지에 따른 물성 변화)

  • Choi, In-Hag;Kim, Hak-Yoon;Lee, Gee-Dong
    • Food Science and Preservation
    • /
    • v.20 no.1
    • /
    • pp.76-80
    • /
    • 2013
  • This study investigated the textural changes after the calcium-pectin bonding of ginseng roots and their vinegar and calcium solution immersion. The strength and breakdown of the ginseng roots increased according to the increase in the calcium carbonate concentration, with the highest in the 0.7~1.0% calcium carbonate. The hardest and softest ginseng roots were obtained in the 1.0% calcium carbonate concentration. The strength, brittleness and hardness of the ginseng roots that were soaked in 1% calcium carbonate and 5~6% acidity vinegar continued to increase with the long-term storage of the ginseng root drink. The softness of the ginseng root that was dipped in 5% acidity vinegar with 1.0% calcium carbonate decreased with the long-term storage of the ginseng root drink. Thus, calcium and vinegar immersion of ginseng roots could prevent softening and clouding during the long-term storage of the ginseng root drink.

Synthesis of ultrafine calcium carbonate powders from high concentrated calcium hydroxide solution (고농도 수산화칼슘 수용액으로부터 초미립 경질 탄산칼슘 분말의 합성)

  • Ahn, Ji-Whan;Park, Charn-Hoon;Kim, Jeong-Heo;Lee, Jong-Kook;Kim, Hwan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.4
    • /
    • pp.509-520
    • /
    • 1996
  • Ultrafine calcim carbonate powders with the size of $0.05~0.1\;{\mu}m$ and the calcite phase were synthesized by the nozzle spouting method, which could be only obtained when high calcium ion concentration within slurry was maintained at the beginning of the reaction. But, in the regions of low ${Ca(OH)}_2$ concentration (0.5~1.0 wt%) or high ${Ca(OH)}_2$ concentration (<3.0 wt%), synthesized calcium carbonate powder was shown the large particle size with agglomeration. To obtain ultrafine calcium carbonate powder in this region, the methods of slurry circuation and $CO_{2}$ gas supply were changed during reaction. Resultly, it was possible to synthesize ultrafine particles (${\approx}0.05{\mu}\textrm{m}$)in the regions of low ${Ca(OH)}_2$ concentration (${\approx}0.5wt%$) and high ${Ca(OH)}_2$ concentration (${\approx}0.5wt%$), which can not be obtained the fine calcium carbonate powder still now.

  • PDF

Studies on the Preparation of Precipitated Calcium Carbonate(I) : Formation and Transformation of Amorphous Calcium Carbonate (침강성탄산칼슘의 제조에 관한 연구(I) : 비정질탄산칼슘의 생성과 전이)

  • Ha, Ho;Park, Seung-Soo;Lee, Hee-Cheol
    • Applied Chemistry for Engineering
    • /
    • v.3 no.3
    • /
    • pp.522-526
    • /
    • 1992
  • Carbonation process of an aqueous solution of $Ca(OH)_2$ with $CO_2$ gas at $10^{\circ}C$ has been studied to investigate the formation and transformation processes of amorphous calcium carbonate. It was suggested that the amorphous calcium carbonate consisting of spherical particles with the diameter in the range of $0.02{\sim}0.05{\mu}m$ be a non-stoichiometric $CaCO_3$ phase containing small amounts of $H_2O$ and small incorporations of $HCO^-_3$. Amorphous $CaCO_3$ is unstable in the aqueous solution and converts to calcite, and its morphology depends on the carbonate species present in the slurry such that with [$CO_3^{2-}$] prevailing, chain-like calcite composed of ultrafine colloidal particles and with [$HCO^-_3$] prevailing, rhombohedral particles of calcite are formed respectively. Therefore, morphological control of calcium carbonate crystals could be expected by the adequate controls of transformation process of the amorphous calcium carbonate.

  • PDF

Evaluation of Soil Improvement by Carbonate Precipitation with Urease (요소분해효소에 의한 탄산칼슘 침전을 통한 지반 개량 평가)

  • Song, Jun Young;Sim, Youngjong;Jin, Kyu-Nam;Yun, Tae Sup
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.9
    • /
    • pp.61-69
    • /
    • 2017
  • This study presents the experimental results of $CaCO_3$ formation in sand by the Enzyme Induced Carbonate Precipitation (EICP) method. Concentration of $CaCO_3$ with elapsed reaction time is calibrated by standardized procedure by measuring $CO_2$ pressure, and it increases with time towards asymptotic value. Jumunjin sand saturated with EICP solution shows that both shear wave velocity and electrical conductivity sharply increase as the reaction starts to approach to the constant values after 50 hours of reaction time. Urease concentration of 0.5 g/L exhibits 224% higher final shear wave velocity than that of 0.1 g/L. The nucleation models hint that carbonate tends to precipitate not only at grain contacts but also at grain surfaces. Regardless of urease concentration, electrical conductivity and shear wave velocity follow the unique path. The scanning electron microscopic images and X-ray computed tomographic images validate the spatial configuration of produced $CaCO_3$ in soils.

Effects of the Recycled Waste Rope Fibers on the Strength and Carbonation Resistance of Cementitious Composites (폐로프 재활용 섬유보강 시멘트 복합체의 탄산화가 강도에 미치는 영향)

  • Sanghwan Cho;Taek Hee Han;Min Ook Kim
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.407-415
    • /
    • 2023
  • In this study, a carbonation test was conducted on cementitious composites reinforced with recycled waste rope fibers (W series) according to EN 12390-12 standards. The test results were compared to those of commercially available polypropylene fibers (P series). In the carbonation test, both the carbonation depth and area were significantly influenced by the water-to-cement ratio. Notably, the carbonation resistance performance of cementitious composites containing waste rope fibers surpassed that of commercially available PP fibers under equivalent conditions. Throughout the 250-day test period, the W series exhibited higher compressive strength values than the P series, while both series displayed a similar trend of strength increase during the same duration. During the initial stage, the W series exhibited flexural strength levels similar to those of the P series. However, in the later stages, the P series showed a higher mean flexural strength by 1.0 MPa.

A Study on Mineral Carbonation of Chlorine Bypass Dust with and without Water Washing (수세 유무에 따른 염소 바이패스 분진의 광물 탄산화 연구)

  • Hye-Jin Yu;Woo Sung Yum
    • Resources Recycling
    • /
    • v.32 no.6
    • /
    • pp.18-24
    • /
    • 2023
  • This study undertook initial investigations into the carbonation of chlorine bypass dust, aiming to apply it as a raw material for cement and as an admixture for concrete. Various experimental methods, including XRD(X-ray diffraction), XRF(X-ray fluorescence), and particle size distribution analyses, were employed to verify the physical and chemical properties of chlorine bypass dust, with and without water washing. The mineral carbonation extent of chlorine bypass dust was examined by considering the dust type, stirring temperature, and experiment duration. Notably, a higher degree of mineral carbonation was observed in water-washed bypass dust than its non-water-washed counterpart, indicating an elevated calcium content in the former. Furthermore, an augmented stirring temperature positively impacted the initial stages of mineral carbonation. However, divergent outcomes were observed over time, contingent upon the specific characteristics of dust types under consideration.

Sequence Stratigraphy of the Yeongweol Group (Cambrian-Ordovician), Taebaeksan Basin, Korea: Paleogeographic Implications (전기고생대 태백산분지 영월층군의 순차층서 연구를 통한 고지리적 추론)

  • Kwon, Y.K.
    • Economic and Environmental Geology
    • /
    • v.45 no.3
    • /
    • pp.317-333
    • /
    • 2012
  • The Yeongweol Group is a Lower Paleozoic mixed carbonate-siliciclastic sequence in the Taebaeksan Basin of Korea, and consists of five lithologic formations: Sambangsan, Machari, Wagok, Mungok, and Yeongheung in ascending order. Sequence stratigraphic interpretation of the group indicates that initial flooding in the Yeongweol area of the Taebaeksan Basin resulted in basal siliciclastic-dominated sequences of the Sambangsan Formation during the Middle Cambrian. The accelerated sea-level rise in the late Middle to early Late Cambrian generated a mixed carbonate-siliciclastic slope or deep ramp sequence of shale, grainstone and breccia intercalations, representing the lower part of the Machari Formation. The continued rise of sea level in the Late Cambrian made substantial accommodation space and activated subtidal carbonate factory, forming carbonate-dominated subtidal platform sequence in the middle and upper parts of the Machari Formation. The overlying Wagok Formation might originally be a ramp carbonate sequence of subtidal ribbon carbonates and marls with conglomerates, deposited during the normal rise of relative sea level in the late Late Cambrian. The formation was affected by unstable dolomitization shortly after the deposition during the relative sea-level fall in the latest Cambrian or earliest Ordovician. Subsequently, it was extensively dolomitized under the deep burial diagenetic condition. During the Early Ordovician (Tremadocian), global transgression (viz. Sauk) was continued, and subtidal ramp deposition was sustained in the Yeongweol platform, forming the Mungok Formation. The formation is overlain by the peritidal carbonates of the Yeongheung Formation, and is stacked by cyclic sedimentation during the Early to Middle Ordovician (Arenigian to Caradocian). The lithologic change from subtidal ramp to peritidal facies is preserved at the uppermost part of the Mungok Formation. The transition between Sauk and Tippecanoe sequences is recognized within the middle part of the Yeongheung Formation as a minimum accommodation zone. The global eustatic fall in the earliest Middle Ordovician and the ensuing rise of relative sea level during the Darrwillian to Caradocian produced broadly-prograding peritidal carbonates of shallowing-upward cyclic successions within the Yeongheung Formation. The reconstructed relative sea-level curve of the Yeongweol platform is very similar to that of the Taebaek platform. This reveals that the Yeongweol platform experienced same tectonic movements with the Taebaek platform, and consequently that both platform sequences might be located in a body or somewhere separately in the margin of the North China platform. The significant differences in lithologic and stratigraphic successions imply that the Yeongweol platform was much far from the Taebaek platform and not associated with the Taebaek platform as a single depositional system. The Yeongweol platform was probably located in relatively open shallow marine environments, whereas the Taebaek platform was a part of the restricted embayments. During the late Paleozoic to early Mesozoic amalgamations of the Korean massifs, the Yeongweol platform was probably pushed against the Taebaek platform by the complex movement, forming fragmented platform sequences of the Taebaeksan Basin.

Studies for CO2 Sequestration Using Cement Paste and Formation of Carbonate Minerals (시멘트 풀을 이용한 CO2 포집과 탄산염광물의 생성에 관한 연구)

  • Choi, Younghun;Hwang, Jinyeon;Lee, Hyomin;Oh, Jiho;Lee, Jinhyun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.17-30
    • /
    • 2014
  • Waste cement generated from recycling processes of waste concrete is a potential raw material for mineral carbonation. For the $CO_2$ sequestration utilizing waste cement, this study was conducted to obtain basic information on the aqueous carbonation methods and the characteristics of carbonate mineral formation. Cement paste was made with W:C= 6:4 and stored for 28 days in water bath. Leaching tests using two additives (NaCl and $MgCl_2$) and two aqueous carbonation experiments (direct and indirect aqueous carbonation) were conducted. The maximum leaching of $Ca^{2+}$ ion was occurred at 1.0 M NaCl and 0.5 M $MgCl_2$ solution rather than higher tested concentration. The concentration of extracted $Ca^{2+}$ ion in $MgCl_2$ solution was more than 10 times greater than in NaCl solution. Portlandite ($Ca(OH)_2$) was completely changed to carbonate minerals in the fine cement paste (< 0.15 mm) within one hour and the carbonation of CSH (calcium silicate hydrate) was also progressed by direct aqueous carbonation method. The both additives, however, were not highly effective in direct aqueous carbonation method. 100% pure calcite minerals were formed by indirect carbonation method with NaCl and $MgCl_2$ additives. pH control using alkaline solution was important for the carbonation in the leaching solution produced from $MgCl_2$ additive and carbonation rate was slow due to the effect of $Mg^{2+}$ ions in solution. The type and crystallinity of calcium carbonate mineral were affected by aqueous carbonation method and additive type.

Effect of Sodium Lignosulfonate Treatment on the Dispersion of CaCO3 in CaCo3/Polypropylene Composite (Sodium Lignosulfonate 표면처리가 탄산칼슘/폴리프로필렌 복합체에서 탄산칼슘의 분산에 미치는 영향)

  • Song, Junyoung;Kwark, Young-Je;Jeong, Youngjin
    • Polymer(Korea)
    • /
    • v.39 no.3
    • /
    • pp.382-387
    • /
    • 2015
  • The dispersion of calcium carbonate ($CaCO_3$) in polypropylene (PP) and the effect of $CaCO_3$ size on the crystallinity of PP were studied. Polymer composite usually suffers from the brittleness when reinforced with inorganic fillers. The problem is generally related to the size and dispersion of fillers. First, the dispersion was studied for the nanosize $CaCO_3$ with 15~40 nm average diameter. To enhance the dispersibility in PP, the surface of the $CaCO_3$ was treated with sodium lignosulfonate (SLS). $CaCO_3$/PP composites were prepared via melt compounding. The $CaCO_3$ coated with more than 3 wt% SLS was uniformly distributed within the PP matrix, while the uncoated $CaCO_3$ formed aggregated structures in the PP. Even with 30 wt%, the SLS-$CaCO_3$ was well dispersed in the PP matrix. Also, the transition enthalpy of $CaCO_3$/PP increased and the full-width of half maximum of the crystallization peak decreased regardless of SLS coating and size of $CaCO_3$. However, the crystallinity of PP was more influenced by nano $CaCO_3$. These results imply that the nano $CaCO_3$ coated with SLS may reduce the brittleness of polymer composites.

The Extraction of Ca in Electric arc Furnace Slag for CO2 Sequestration (CO2고정화(固定化)를 위한 전기로제강(電氣爐製鋼)슬래그의 칼슘성분(成分) 침출(浸出))

  • Youn, Ki-Byoung
    • Resources Recycling
    • /
    • v.22 no.1
    • /
    • pp.64-71
    • /
    • 2013
  • Mineral carbonation has been proposed as a possible way for $CO_2$ sequestration. The electric arc furnace slags consist of calcium, magnesium and aluminum silicates in various combinations. If they could be used instead of natural mineral silicates for carbonation, considerable energy savings and $CO_2$ emissions reductions could be achieved. Indirect aqueous carbonation of the slags consists of two steps, extraction of calcium and carbonation. Acetic acid leaching of electric arc furnace slags had been already studied to extract Ca in them, but it was reported that the carbonation of the extracted $Ca^{2+}$ in the leached solution would suffer from too slow kinetics, even at high pressure of $CO_2$. In this work, to develop more efficient extraction of the electric arc furnace slags, hydrochloric acid leaching to separate calcium from them was studied, and the results were compared with the acetic acid ones. The phase boundary between $Ca^{2+}$ and $CaCO_3$ in the solution with pH was determined by thermodynamic calculations. Hydrochloric acid was more effective than acetic acid for the extraction of Ca in electric arc furnace slag, and there is a possibility to recycle an unreacted hydrochloric acid in the leached solution by electrolysis or evaporation.