• Title/Summary/Keyword: 탄산화

Search Result 793, Processing Time 0.022 seconds

Microscopic Influence of Temperature on Carbonation for Marine Concrete Structure (항만콘크리트 구조물의 탄산화에 미치는 온도의 미세구조적 영향)

  • Han, Sang-Hun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.4
    • /
    • pp.272-278
    • /
    • 2010
  • Some recent researches reported that high temperature rising decreases the carbonation depth of concrete, which is contrary to the previous research results. Carbonation has been known as a reaction between calcium hydroxide and carbon dioxide. But a few researches showed that the other cement hydrates as well as calcium hydroxide react with carbon dioxide. This paper investigates the influence of temperature on carbonation and the variation of $Ca(OH)_2$ and $CaCO_3$ by carbonation. In order to estimate the carbonation depth and the quantities of reactant and product of carbonation reaction, phenolphthalein testing and thermagravimetric analyzer test were conducted. The measurement of carbonation depth with temperature showed that the temperature increase from $20^{\circ}C$ to $30^{\circ}C$C in carbonation environment makes the carbonation depth larger, but the increase from $30^{\circ}C$ to $40^{\circ}C$ has a small influence on the carbonation depth. Comparing calcium hydroxide and calcium carbonate with temperature, the quantity of $CaCO_3$ of specimen carbonated at $30^{\circ}C$ is greater than that of specimen carbonated at $40^{\circ}C$ and the quantity of $Ca(OH)_2$ of specimen carbonated at $30^{\circ}C$ is similar to that of specimen carbonated at $40^{\circ}C$. This observation shows that there is the optimum temperature increasing carbonation depth and the optimum temperature is close to $30^{\circ}C$.

A Study on the Carbonation Characteristics of Fly Ash Concrete by Accelerated Carbonation Test (급속 촉진 탄산화 시험을 통한 플라이애쉬 콘크리트의 탄산화 특성 연구)

  • Choi, Sung;Lee, Kwang-Myong;Jung, Sang-Hwa;Kim, Joo-Hyung
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.4
    • /
    • pp.449-455
    • /
    • 2009
  • The increase of industrial carbonic dioxide emissions has accelerated the carbonation of reinforced concrete structures, which drops off their durability. Although advanced countries have already taken safety control measures against the carbonation of RC structures, it is still difficult now to accurately predict the actual carbonation depth. Additionally, it requires much time and efforts. Recently, it is possible to get the data more rapidly through accelerated carbonation test with the $CO_2$ concentration of 100%. In this paper, the carbonation test results obtained by two test methods such as the normal carbonation test method and the accelerated carbonation test method, were compared to investigate the carbonation characteristics of fly ash concrete. The accelerated carbonation test on concrete specimens with the pre-curing age of 180 days was also carried out to examine the carbonation characteristics of fly ash concrete at long-term age. Consequently, fly ash concrete at early age was vulnerable to carbonation and however, its carbonation resistance at long-term ages was improved compared with OPC concrete.

Analysis of Carbonation for Harbor Concrete Structure (항만 콘크리트 구조물에 대한 탄산화 해석)

  • Han, Sang-Hun;Park, Woo-Sun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.6
    • /
    • pp.575-582
    • /
    • 2008
  • Carbonation is one of major factors influencing on the durability of concrete structure. This paper investigates the effect of carbonation on the soundness of harbor concrete structure and quantifies the influence of carbonation based on in-situation data tested at 369 points in 69 harbor facilities. The relationships between carbonation depth and cover depth, and between carbonation depth and compressive strength are studied and the failure probability of durability, that is the initiation probability of steel corrosion, is evaluated on the basis of reliability concept. The in-situation test results showed that the ratio of carbonation depth to cover depth was less than 0.2, and the carbonation depth increased with age. In most cases, the failure probability of durability by carbonation was less than 10%. Therefore, it can be concluded that the influence of carbonation on the durability of harbor concrete structure is smaller than other factors deteriorating the durability of harbor concrete structure.

Influence of Carbonation of Concrete on Electrical Resistivity (콘크리트의 탄산화가 전기저항에 미치는 영향)

  • Yoon, In-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.5
    • /
    • pp.27-33
    • /
    • 2014
  • Electrical resistivity of concrete can be measured in a more rapid and simple way for estimating durability of the concrete, however, carbonation causes a result of misleading for durability testing because carbonation leads to a significant reduction in the permeability and porosity of concrete. The purpose of this study is to estimate and quantify the effect of carbonation of concrete on a surface electrical resistivity measurement. Samples of three mixes with difference w/c were prepared and exposed in a carbonation chamber for 330 days. The results show that carbonation leads high electrical resistivity. The increase is substantial and has been shown to proportional to the extent of the carbonation by some of extent. The relationship between electrical resistivity and carbonation depth is taken in the study. Resistivity ratio of carbonated concrete to air concrete decreased significantly from the specific carbonation depth, however, resistivity ratio of carbonated concrete to air concrete had a linear relation with carbonation depth. From the relationship between electrical resistivity and carbonation depth, it is expected that the result should be subsequently used as a calibration curve for estimating carbonated concrete to overcome the interruption effect of carbonation on regular measurements of the electrical resistivity.

Simplified Carbonation Model Considering Ca(OH)2 Solubility and Porosity Reduction (수산화칼슘 용해도와 공극률 감소를 고려한 간략화 된 탄산화 모델)

  • Lee, Yun;Kwon, Seung-Jun;Park, Ki-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.1
    • /
    • pp.128-138
    • /
    • 2015
  • Carbonation is one of the most critical deterioration phenomena to concrete structures exposed to high $CO_2$ concentration, sheltered from rain. Lots of researches have been performed on evaluation of carbonation depth and changes in hydrate compositions, however carbonation modeling is limitedly carried out due to complicated carbonic reaction and diffusion coefficient. This study presents a simplified carbonation model considering diffusion coefficient, solubility of $Ca(OH)_2$, porosity reduction, and carbonic reaction rate for low concentration. For verification, accelerated carbonation test with varying temperature and MIP (Mercury Intrusion Porosimetry) test are carried out, and carbonation depths are compared with those from the previous and the proposed model. Field data with low $CO_2$ concentration is compared with those from the proposed model. The proposed model shows very reasonable results like carbonation depth and consuming $Ca(OH)_2$ through reduced diffusion coefficient and porosity compared with the previous model.

Predicting Carbonation Progress of Carbonation Repaired RC Structures Repair (탄산화가 진행된 기존 RC구조물의 보수 공법 적용 후 탄산화 진행 예측)

  • Lee, Hyung-Min;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.3
    • /
    • pp.235-243
    • /
    • 2017
  • Carbonation of concrete is being occurred due to interaction of atmospheric carbon dioxide with hydroxides. Reinforce concrete (RC) structure is getting collapse or accident due to corrosion of embedded steel rebar. The maintenance of reinforced concrete structure recently has the attention of researchers regarding durability of structure and its importance day by day is increasing. In order to study the carbonation progress of pre-repaired concrete, present study was carried out to measure the carbonation velocity for different repair materials up to 100% of carbonation. The obtained results have predicted the carbonation progress of repair materials in service condition. These results have been verified by FEM and FDM analysis. As a result, the carbonation depth can be predicted by using the carbonation prediction formula after the repair, and the analytical and the experimental values are almost similar when the initial $Ca(OH)_2$ concentration is assumed to be 40%.

Carbonation Properties of Ordinary Concrete Exposed for 15 Years (15년간 노출 시험한 일반 콘크리트의 탄산화 특성 검토)

  • Lee, Binna;Lee, Jong-Suk
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.3
    • /
    • pp.261-268
    • /
    • 2022
  • In this study, Long-term test specimens were tested in the outdoor exposure environment and the carbonation properies of concrete were analyzed. The test specimens were manufactured in 40 %, 50 % and 60 % according to the w/c ratio. Carbonation was measured at 3 years and 15 years of age. Based on the results, long-term carbonation prediction models(KICT model) were derived. As a result, carbonation increased according to the w/c. Based on the w/c 40 %, w/c 50 % increased about 1.8 times and w/c 60 % increased about 3.7 times. Comparison of carbonation according to age was that the carbonation at 15th year was about 3 times higher that of 3rd year. As results of comparing the KICT models and other carbonation prediction models, the carbonation prediction showed different values.

Service Life Prediction and Carbonation of Bridge Structures according to Environmental Conditions (환경 조건에 따른 교량구조물의 탄산화 현황 및 내구수명 예측)

  • Kim, Hun-Kyom;Kim, Sung-Bo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.4
    • /
    • pp.126-132
    • /
    • 2010
  • Carbonation is the results of the interaction of carbon dioxide gas in the atmosphere with the alkaline hydroxides in the concrete. Reinforced steel corrosion due to concrete carbonation is one of main factors on the decrease in durability of RC structure. This study investigates the influence of carbonation on the bridges under various environment condition and quantifies the effect of carbonation various domestic field data. The failure probability of durability is evaluated on the basis of reliability concept. In addition, service life of the structures is predicted based on the intended probability of durable failure in domestic concrete specification. According to experimental results of the carbonation depth, the carbonation depth increased with structural age. It is analyzed that carbonation velocity of the structures under urban area and sea condition is 1.6-1.9 times faster than the river condition. Service life of the bridges under urban area and sea condition is decreased about 2.4-3.3 times than river condition.

A Study on the Microstrucutre Changes by carbonation in NPP Concrete (원전콘크리트의 탄산화에 의한 미세구조 변화에 관한 연구)

  • Lee, Jang-Hwa;Kim, Do-Gyeum;Kim, Ki-Beom;Lee, Ho-Jae
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.400-403
    • /
    • 2011
  • 본 논문에서는 시차열중량분석법과 X-선 회절분석법을 이용한 원전콘크리트의 탄산화에 의한 열화도 평가를 진행하였으며 두 가지 정성적 분석방법을 이용한 반정량적 평가 방법을 개발하였다. 원자력발전소 건설에 사용된 동일한 콘크리트 배합을 사용한 시편을 촉진 탄산화 시험장치에 28, 56, 91, 180, 365일 기간에 걸쳐 노출시켜 탄산화를 진행하였으며 노출된 시편은 시차열중량분석법, X-선 회절분석법을 이용하여 탄산화에 따라 발생된 열화생성물의 양을 정성적으로 분석하였다. 그 결과, 탄산화로 인해 발생되는 Calcite의 양이 노출기간에 따라 점차적으로 증가되는 것이 확인되었으며, Calcite의 생성을 위해 이산화탄소와 반응하는 Portlandite의 양이 점차적으로 감소되는 것이 확인되었다. 본 논문에서는 위의 언급된 두 방법의 관계성을 통해 열화도 평가를 진행하였다.

  • PDF

Carbonation Analysis of Bridge Structures in Urban Area Based on the Results of the Field Test (현장실험결과를 활용한 국내 도심지 교량구조물의 탄산화 해석)

  • Kim, Hun-Kyom;Kim, Sung-Bo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.4
    • /
    • pp.111-118
    • /
    • 2010
  • Reinforced steel corrosion due to concrete carbonation is one of main factors on the durability of RC structure. The carbonation velocity have an effect on carbon dioxide density, concrete quality and structural shape. Specially, these problems have increased in urban area. This study investigates the carbonation status of the bridges and quantifies the effect of carbonation based on various domestic field data. The failure probability of durability is evaluated on the basis of reliability concept. According to experimental results of the carbonation depth, the carbonation depth increased with structural age and carbonation velocity decreased with high strength of concrete. In most cases, the failure probability of durability by carbonation was more than 10%. Also, The results requires the minimum cover thickness of 70-80mm for target safety index(${\beta}$=1.3) proposed by Korean concrete specification.