• Title/Summary/Keyword: 탁도 제거

Search Result 250, Processing Time 0.024 seconds

Improvement of Turbidity Removal using the Two Stage Electroflotation-rising Process (2단계 전기부상-상승 공정을 이용한 탁도 제거 향상)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.29 no.9
    • /
    • pp.907-914
    • /
    • 2020
  • In this study, the two-stage electroflotation-rising process was investigated with the aim of improving the performance of the conventional one-stage electroflotation process. A total of 32 min (the electroflotation and rising times were 30 min and 2 min, respectively,) was required when a current of 0.35 A was applied in the one-stage electroflotation-rising experiment. The amount of electric power required to treat 1 ㎥ of water was 1.75 kWh/㎥. For the two- stage system, the time required to achieve a turbidity removal rate of over 95% was 16 min (50% of the one-stage system). The amount of electric power required to treat 1 ㎥ of water was 0.59 kWh/㎥, which was only 33.7% of that required for the one-stage process. The total treatment time and electric power were excellent in case of the two-stage system in comparison with those of the one-stage process. The rate of turbidity removal for the horizontal electrode arrangement is 9.3% higher than that of vertical electrode arrangement. When Na2SO4 was used as the electrolyte, the optimum electrolyte concentration was 1.0 g/L.

Disinfection and Removal of SS and T-P Using DOF (Dissolved Ozone Flotation) (DOF(Dissolved Ozone Flotation)를 이용한 부유물질과 총인의 제거와 소득의 동시효과에 관한 연구)

  • Lee., Byoung-Ho;Kim, Sung-Hyuk;Lee, Sang-Bae;Kim, Mi-Jeong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.2
    • /
    • pp.215-221
    • /
    • 2004
  • Effluent of wastewater treatment plant is to be disinfected to protect drinking water sources. DOF (Dissolved Ozone Flotation) was developed to meet this purpose. DOF was developed by combining DAF system with ozone. DAF system has good floating power with numerous microbubbles, and ozone has strong oxidation capability. And DOF system has good floating power and strong oxidation capability simultaneously. When DOF was applied to secondary wastewater effluent, color of 11CU in raw water which was secondary effluent was reduced to 1CU by the DOF system. Removal rate of other water quality parameters treated by DOF were also higher than that by DAF, which were proved the strength of oxidation capability of ozone. When ozone concentration of 3.3mg/l were applied in DOF system, general aerobic bacteria were reduced to 5CFU/ml from TNTC (Too many Numbers To Count). With the same ozone concentration, total coliform were not detected at all. These figures are under the numbers of drinking water regulation. These microbes were the target parameters of DOF. It was proved that DOF was very effective in disinfection of wastewater treatment plant effluent as well as in removal of color, turbidity, and T-P.

Turbidity Treatment of TiO2 Wastewater by Electrocoagulation/flotation Process (전기응집/부상 공정을 이용한 TiO2 폐수의 탁도 제거)

  • Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.19 no.1
    • /
    • pp.89-96
    • /
    • 2010
  • The separation of $TiO_2$ wastewater carried out by an electrocoagulation/flotation process, which had various operating parameters. The effect of electrode material (aluminum and four dimensionally stable electrode), applied current (0.07~0.5 A), electrolyte concentration (0~1 g/L), solution pH (3~11), initial turbidity (1000~20000 NTU) and suspended solid concentration (5000~25000 mg/L) were evaluated. Turbidity removal efficiency of the soluble anode (aluminum), which could produce metal ions, was higher than that of the dimensionally stable electrode. Considering operation time, turbidity removal and electric power, optimum current was 0.19 A. The more NaCl dosage was high, the less electric power was required. However, optimum NaCl concentration was 0.125 g/L considered removal efficiency, operation time and cost. Initial $TiO_2$ concentration did not affected turbidity removal on the electrocoagulation/flotation operation. The electrocoagulation/flotation process was proved to be a very effective separation method in the removal of $TiO_2$ from wastewater.

From Deep Bed Filter to Membrane Filtration: Process Intensification, Cost and Energy Considerations (입자분리를 위한 여과방식에 따른 비용-효율 분석)

  • BEN AIM, Roger;Kwon, Dae-young
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.2
    • /
    • pp.144-148
    • /
    • 2005
  • The industrial development of large scale deep bed filters has been a very important step in the process of drinking water production and more recently in the tertiary treatment of wastewater. The target of deep bed filtration is the retention is the retention of small particles generally smaller than 30 microns at relatively small concentration, generally less than 30 mg/l from natural water (surface water or aquifers) or secondary treated wastewater. The relation between the retention efficiency and the characteristics of the particles has been extensively studied experimentally and through different models of retention. During the last years the development of new technologies (fiber filter, membrane modules) lead to more intensive processes compared to conventional sand filtration. Fiber filters can combine intensification with a decrease in specific energy needed however they cannot be operated under gravity like sand filters. Membrane filters (UF or MF) are much more intensive and efficient than sand filters. The specific energy needed is not so high (about $0.1Kwh/M^3$) but is higher than sand or fiber filter. A Life Cycle Analysis (LCA) has to be made for a complete comparison between these technologies taking in account that the efficiency of particle retention obtained by membrane filters is unique.

Pilot-Scale Evaluation of Granular Filters Using Particle Distribution Analysis (여재구성에 따른 탁질입자 제거특성 및 효율 비교)

  • Ahn, Jong-Ho;Yoon, Jae-Heung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.5
    • /
    • pp.919-926
    • /
    • 2000
  • The experiment in this study was conducted as a part of an effort to evaluate filter performance with pilot-filters consisting of one mono-media and two dual-media columns. Particle distribution analysis using a particle counter is more sensitive and better than turbidity analysis in observing particle detachments and a breakthrough. In sand media filters having 1.5 m of available head, caution is needed in the head loss of the late stages of filtration, and for dual-media filters, appropriate media configuration and effluent Quality monitoring should be used for preventing the final breakthrough. Also the time of particle breakthrough in the dual media filter can be deferred by increasing bed depth, and it is necessary to use a filtration aid prior to filtration to prevent breakthrough of these intermediate sized particles in high filtration rate.

  • PDF

A Modified Methodology of Salt Removal through Flooding and Drainage in a Plastic Film House Soil (시설재배지에서 토양 담수 및 배수에 의한 염류집적 경감 방안)

  • Oh, Sang-Eun;Son, Jung-Su;Ok, Yong-Sik;Joo, Jin-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.5
    • /
    • pp.565-571
    • /
    • 2010
  • One of the disadvantages of flooding treatment for desalting from soils is that salts move to deep soils after flooding and at the end reaccumulate at the soil surface through capillary movements. This study was carried out to remove salts from soils in plastic film houses by a modified flooding method, drainage after flooding. The method successfully removed salts at the soil surface and salts did not move to the deep soil. Drained water containing N, P and K could be reused as fertilizer. By applying small amount of MgO, turbidity of water flooded decreased in 30 min by 95%. Struvite should be formed since the flooded water contain ammonia and phosphorous and their concentrations were decreased. This could be utilized as fertilizer which provides a slow-release source of phosphorus, magnesium and nitrogen that features low inherent water solubility.

Advanced Water Treatment of High Turbidity Source by Hybrid Process of Photocatalyst and Alumina Microfiltration: Effect of Organic Matters at Nitrogen Back-flushing (광촉매 및 알루미나 정밀여과 혼성공정에 의한 고탁도 원수의 고도정수처리: 질소 역세척시 유기물의 영향)

  • Park, Jin Yong;Sim, Sung Bo
    • Membrane Journal
    • /
    • v.22 no.6
    • /
    • pp.441-449
    • /
    • 2012
  • Effect of humic acid (HA) with periodic nitrogen back-flushing was investigated in hybrid process of alumina microfiltration and photocatalyst for drinking water treatment. It was compared and investigated with the previous results of microfiltration water back-flushing or ultrafiltration nitrogen back-flushing in viewpoints of membrane fouling resistance ($R_f$), permeate flux (J), and total permeate volume ($V_T$). As results, the trends of membrane fouling were different depending on nitrogen or water back-flushing, and depending on ultrafiltration or microfiltration made with the same material. Also, the nitrogen back-flushing using microfiltration was more effective membrane fouling inhibition than ultrafiltration, and the nitrogen back-flushing was more effective than water back-flushing using the same microfiltration membrane. Turbidity treatment efficiencies were almost constant independent of HA concentration, but HA treatment efficiency was the maximum at HA 10 mg/L. From this results, it was shown that the treated water HA quality increased as increasing HA concentration, but HA could be removed the most effectively by photocatalyst beads adsorption and photo-oxidation at HA 10 mg/L.

Evaluation of Turbidity Removal Efficiency on under Flow Water by Pore Controllable Fiber Filtration (공극제어형 섬유사 여과기를 이용한 복류수의 탁도 제거효율 평가)

  • Kim, Jeong-Hyun;Bae, Chul-Ho;Kim, Chung-Hwan;Park, No-Suk;Lee, Sun-Ju;Anh, Hyo-Won;Huh, Hyun-Chul
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.2
    • /
    • pp.135-143
    • /
    • 2005
  • It was evaluated that the effect of turbidity removal by Pore Controllable Fiber Filter(PCF) installed in NS(Naksang) small water treatmant plant(system) using under flow water as raw water in the study. The results of the study are as the followings. Firstly, the removal efficiency of turbidity by PCF without coagulation(in operation mode not using coagulants) was mostly below 20 percent. On the other hand, when operation using proper coagulants, that of turbidity was mostly over 80 percent. Secondly, slow sand filtration after PCF, total turbidity removal efficiency of final treated water was 84.3 percent, and the contribution by PCF was 57.1 percent and that of slow sand filtration was 27.7 percent. Therefore the introduction of PCF as pre-treatment process would be helpful to reduce the loading of high turbidity of slow sand filtration. Thirdly, the results of particle counter measurements showed that when operated PCF with coagulants, fine flocs captured or adsorbed at the pore of PCF were flow out into the effluents from 120 minutes after backwashing because of the increase of headloss of PCF. Therefore the decision of backwashing time should made consideration into the outflow of fine flocs from PCF. Fourth, coagulant dosages on PCF at the same turbidity was largely variable because of the effect of the raw water characteristics and the turbidity increase velocity at rainy days, therefore flexible coagulant dosages should be considered rather than fixed coagulant dosage by the influent jar-test result.

Characterization of ITO surfaces treated by the remote plasma (원거리 플라즈마에 의해 처리된 ITO 표면 상태의 특징)

  • 김석훈;김양도;전형탁
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.130-130
    • /
    • 2003
  • 일반적으로 Indium tin oxide (ITO)는 유기EL 소자 제작 공정에서 필수 불가결한 물질로 알려져 있다. ITO는 정공 수송의 기능을 하게 되는데 정공 주입의 효율을 향상시키기 위해서는 ITO 표면의 저 저항화와 ITO/유기박막 접합계면의 일함수 값의 적절한 균형이 중요하다. 그리고 현재 플라즈마를 이용한 ITO 기판의 세정은 산소 래디칼을 이용하여 표면을 산화하는 방식인 산소 플라즈마를 이용한 세정 방법이 널리 이용되고 있다. 본 연구에서는 ITO 표면의 탄소 오염물을 제거하여 저항특성을 향상시키기 위하여 원거리 산소와 수소 플라즈마 세정을 적용하였고, 그에 따른 탄소를 포함하는 오염물의 제거 효율과 산소와 수소 플라즈마로 처리된 ITO 표면의 특징을 기술하였다. 실험에 사용된 플라즈마 소스는 radio-frequency(RF) 플라즈마이고, 원거리 플라즈마 세정 시스템과 표면 분석 장비인 X-ray photoelectron spectroscopy(XPS)가 in-situ로 연결되어 있는 진공장비로 분석을 하였다 플라즈마 세정 전에 전처리 세정을 시행하지 알았으며, 세정 후 in-situ XPS에 의해서 화학 조성 및 결합 구조의 변화를 분석하였다. 또한 일함수와 면저항 값을 측정하고 그에 따른 표면의 저항 특성 및 표면 전위에 관하여 세정 효율과 연관지어 해석하였다. 원거리 산소/수소 플라즈마 세정 후 ITO 표면의 탄소오염물이 검출한계 이하로 효과적으로 제거된 것을 in-situ XPS 분석 결과로 확인하였고, 플라즈마 처리 순서 및 플라즈마 파워를 변화하여 그에 따른 표면의 결합 상태 및 화학 조성의 변화를 비교 분석하였다.

  • PDF

Characterization and Seawater Filtration Performance of Commerical Microfiltration and Ultrafiltration Membranes (상업용 정밀여과/한외여과막의 특성 분석 및 해수 여과 성능 평가)

  • Choi, Changkyoo;Kim, In S.
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.9
    • /
    • pp.542-547
    • /
    • 2017
  • This paper was to analyze the membrane characterization of hydrophilicity, surface morphology and membrane chemical anlysis of three commercial microfiltration/ultrafiltration membranes, and evaluate the filtration performance of a seawater to assess the availability for pretreatment of desalination process. From the results of contact angle, Mem-3, fabricated with polyacrylonitrile, was highly hydrophilic. It find out that Mem-3 has more anti-biofouling property. In Field emission scanning electron microscope (FESEM), Mem-1 (polyethylene) and Mem-2 (Polyvinylidenefluoride) showed the sponge-like shape and Mem-3 showed finger-like shape. Membrane chemical analysis by energy dispersive spectrometer (EDS) presented that Mem-2 was mostly fluoride and Mem-3 had s high ratio of N (32.47%) due to the nitrile group. The permeation flowrate per time on suction pressures using deionized water (D.I. water) tends that permeation rate of Mem-3 more increased when the pressure was increased compared to other membranes. From the results of turbidity and total suspended solids (TSS) removal, turbidity of permeate was 0.191 NTU to 0.406 NTU and TSS was 2.2 mg/L to 3.0 mg/L in all membranes, indicating that it was not suitable for the pretreatment of seawater desalination by short-term experiments.