• Title/Summary/Keyword: 타이 로드

Search Result 25, Processing Time 0.019 seconds

Hot Forging Simulation of Outer Tie Rod for Reducing Forming Load (성형하중을 감소시키기 위한 아우터 타이로드의 열간 단조해석)

  • Kim, Young-Jun;An, Kyo-Jin;Lee, Kwon-Hee;Park, Young-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.1652-1657
    • /
    • 2015
  • Recently the improvement in vehicle performance trend to increase in accordance with the weight of this part. Outer tie rod is small when compared to the other vehicle part by weight, but there is a need to reduce the weight of the outer tie rod in order to improve fuel efficiency of the vehicle. Therefore, from previous studies, a model of outer die rod is proposed using Design of Experiments and Meta model satisfying the buckling performance. Outer tie rod are manufactured through forging process, in this study, we compare the size of the forming load in accordance with the change in the moving speed through the die forging analysis of the outer tie rod on the basis of the actual molding process.

Convergence Technique Study of Model Tie Rod End by Configuration through Simulation Analysis (시뮬레이션 해석을 통한 형상 별 타이로드 엔드 모델의 융합 기술 연구)

  • Lee, Jung-Ho;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.7 no.1
    • /
    • pp.161-166
    • /
    • 2016
  • Deformation, stress and fatigue life due to the configuration of tie rod end are investigated in this study. Tie rod ends with the total three kinds of configurations are modelled with three dimensions through CATIA program and the simulation analysis is carried out with the ANSYS finite element analysis program. There are the models of A, B and C by the configuration of the rod end. As this study result, maximum deformation, maximum equivalent stress and maximum fatigue life of A type model are shown to be 0.0614mm, 160.27MPa and 336,930cycles respectively. And maximum deformation, maximum equivalent stress and maximum fatigue life of B type model are shown to be 0.0648mm, 90.889MPa and 1,171,000cycles respectively. Maximum deformation, maximum equivalent stree and maximum fatigue life of C type model are also shown to be 0.0402mm, 84.794MPa and 20,000,000cycles respectively. The durability of the models of tie rod ends through the values of this result could be estimated and the data for the design and development of more improved tie rod end could be secured. And it is possible to be grafted onto the convergence technique at design and be shown as the esthetic sense.

Structural Design of the Outer Tie Rod for an Electrical Vehicle (전기 자동차용 아우터 타이로드의 구조설계)

  • Seo, Bu-Kyo;Kim, Jong-Kyu;Lee, Dong-Jin;Seo, Sun-Min;Lee, Kwon-Hee;Park, Young-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.9
    • /
    • pp.4171-4177
    • /
    • 2013
  • Outer tie rod is lighter than other, but there is the trend item weight and the number is increasing due to vehicle performance improvement. Thus, to improve vehicle fuel efficiency, weight lightening is essential. Therefore, this research performed the finite element analysis to investigate the structural performance of the outer tie rod for an electrical vehicle. This study was performed as the preliminary study for a lightweight design of the outer tie rod. The weight of outer tie rod was optimized by adopting the steel material and applying the trial and error method. The strengths due to durability and buckling should be considered in the structural design of an outer tie rod. Furthermore, the meta model-based optimization was applied to obtain its lightweight design, leading to 9 % weigh reduction.

Development of the CFRP Automobile Parts Using the Joint Structure of the Dissimilar Material (결합부 강화구조용 탄소복합재 자동차 부품 개발)

  • Ko, Kwan Ho;Lee, Min Gu;Huh, Mongyoung
    • Composites Research
    • /
    • v.31 no.6
    • /
    • pp.392-397
    • /
    • 2018
  • In this study, the development purpose is to replace steel Tie Rod of commercial vehicle to the carbon composite by a braiding process. CFRP tie rod was designed to meet the performance requirements of existing products by designing the cross section of the core for braiding weaving and the structural design of the joint between the core and the carbon fiber. The specimens were fabricated by braiding method and applied to structural analysis through test evaluation. The manufacturing process proceeded from braiding to infusion through post-curing process. The test evaluation of the final product was satisfactorily carried out by sequentially performing tensile test, torsion test, compression test and fatigue test. In addition, the weight of CFRP tie rod could be reduced by about 37% compared to existing products.

Structural Optimization of an Outer Tie Rod Using RSM and Kriging (반응표면법 및 크리깅을 이용한 아우터 타이로드의 구조 최적화)

  • Kim, Young-Jun;An, Kyo-Jin;Lee, Kwon-Hee;Park, Young-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.1
    • /
    • pp.27-34
    • /
    • 2015
  • It is known that the severest loading condition is the buckling case in the structural design of an outer tie rod. The optimum design of the OTR was suggested considering the buckling performance. The aluminum alloy was investigated as a steel substitute. Then, the structural optimization based on the response surface method and the kriging interpolation method were performed.

Lightweight Design of an Outer Tie Rod Using Meta-Model Based Optimization Technique (메타모델기반최적화를 이용한 아우터타이로드의 경량화 설계)

  • Kim, Young-Jun;Park, Soon-Hyeong;Lee, Kwon-Hee;Park, Young-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.11
    • /
    • pp.7754-7760
    • /
    • 2015
  • The outer tie rod is one of the part of steering system, the optimization process was executed to find the lightweight design. The inner tie rod was considered in the optimum design of an outer tie rod. it could be closer to the test condition than in the case of considering outer tie rod only. The aluminum forging material was considered as a weight reduction proposal. The target of optimization was the shape of the minimum weight to resist at the load of buckling. RSM and Kriging interpolation method were applied as a optimization method to consider the nonlinear shape optimization problem. Then, 16.3%, 16.6% of weight reduction was obtained from the result comparing with that of the initial model. The results of meta model optimization was compared with that of finite element method. The error values of buckling load estimation were 2.6%, 2.04%. and those of weight estimation were 0.17%, 0.13%. Therefore, it seemed that the result of Kriging model could be obtained closer to optimum value than that of RSM model.

Structural Durability Analysis of Tie Rod (타이로드의 구조적 내구성 해석)

  • Han, Moon-Sik;Cho, Jae-Ung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.5
    • /
    • pp.68-75
    • /
    • 2012
  • This study aims at the structural analysis of vibration and fatigue according to the tie rod configuration. The maximum displacement amplitude is happened at 156Hz by harmonic vibration analysis, this tie rod model can be broken as the weakest state. Among the cases of nonuniform fatigue loads, 'SAE bracket history' with the severest change of load becomes most unstable but 'Sine wave' becomes most stable. In case of 'Sine wave' with the average stress of 0MPa and the amplitude stress of 570MPa, the possibility of maximum damage becomes 70%. This stress state can be shown with 140 times more than the damage possibility of 'SAE bracket history' or 'SAE transmission'. The structural result of this study can be effectively utilized with the design on tie rod by investigating prevention and durability against its damage.

Structural Performance Test of Optimized Outer Tie Rod (아우터타이로드 최적화 모델의 구조성능시험)

  • Kim, Jong-Kyu;Seo, Sun-Min;Kim, Young-Jun;Lee, Dong-Jin;Lee, Seul;Park, Young-Chul;Lee, Kwon-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.5
    • /
    • pp.82-87
    • /
    • 2012
  • The outer tie rod that is a part of steering system connects the steering gear to the steering knuckle via the inner tie rod. The formal study suggested the optimized structural design of an outer tie rod installed in a passenger car. Its weight is 284.7g, which is 57.2% lighter weight than initial steel model. This study validates the optimized design of the outer tie rod considering buckling and durability. The assembled unit of an inner tie rod and outer tie rod is utilized to perform the test of the bending strength of the outer tie rod. On the contrary, 1/2 car is utilized to perform the test of its durability performance.

A Study of Light Weight of Tie Rod End in Auto Supplies (자동차 타이로드 엔드 부품의 경량화에 관한 연구)

  • Kim, Y.S.;Kim, I.K.;Tark, J.H.;Kim, D.S.
    • Journal of Power System Engineering
    • /
    • v.3 no.3
    • /
    • pp.70-75
    • /
    • 1999
  • This study is for the development of tie rod end, a parts of steering system, that would be changed with plastic material. The position of weld line is founded by the analysis of Mold Flow, computer software with FEM(Finite Element Method). Then new mold is designed by consideration with the locations of weld line. PA66(G/F 35%), PA6(G/F 45%), PET(G/F 45%) and PET(G/F 55%) are tested two types loading conditions for selecting suitable material, the requirement tensile load(more 19600N). PA6(G/F 45%) showed high mechanical properties in this study. And then, tensile strength was compared between conventional metal products and the injection molded products which were reinforced with 33%, 34%, 45%. 60% of glass fiber in matrix material. In the case of, the measured two types of tensile load values are 24500N (Method-1), 21560N (Method-2) and weight is decreased by 50% of conventional one.

  • PDF

Effectiveness Validation on Cold Multi-Stage Forging of Aluminum Inner Tie Rod Socket (알루미늄 이너 타이로드 소켓의 냉간다단단조 유효성 검증)

  • Park, Jae-Wook;Choi, Jong-Won;Jeong, Enn-Eun;Yoon, Il-Chae;Kang, Myungchang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.1
    • /
    • pp.49-55
    • /
    • 2022
  • Recently, the automobile industry has continued to demand lighter materials owing to international environmental regulations and increased convenience. To address this demand, aluminum parts have increased in popularity and are mainly developed and produced through hot forging and cold pressing. However, because this method has low yield and low production efficiency, a new manufacturing method is desirable. In this study, the water capacity efficiency of an aluminum inner tie rod socket was investigated using cold forging that provided a high yield and excellent production efficiency. Mechanical properties were derived through tensile testing of 6110A aluminum materials, and critical fracture factor and process analysis based on experimental data were carried out. The optimized process was applied as a prototype using cold multi-stage forging, and based on the derived results, the formability, productivity, and material efficiency of aluminum inner tie rod socket parts using this cold forging process was verified.