• Title/Summary/Keyword: 타이어소음

Search Result 152, Processing Time 0.027 seconds

Convolutional neural network based traffic sound classification robust to environmental noise (합성곱 신경망 기반 환경잡음에 강인한 교통 소음 분류 모델)

  • Lee, Jaejun;Kim, Wansoo;Lee, Kyogu
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.6
    • /
    • pp.469-474
    • /
    • 2018
  • As urban population increases, research on urban environmental noise is getting more attention. In this study, we classify the abnormal noise occurring in traffic situation by using a deep learning algorithm which shows high performance in recent environmental noise classification studies. Specifically, we classify the four classes of tire skidding sounds, car crash sounds, car horn sounds, and normal sounds using convolutional neural networks. In addition, we add three environmental noises, including rain, wind and crowd noises, to our training data so that the classification model is more robust in real traffic situation with environmental noises. Experimental results show that the proposed traffic sound classification model achieves better performance than the existing algorithms, particularly under harsh conditions with environmental noises.

Study on the Functional Evaluation of Permeable Asphalt Concrete Pavement in Seoul City (서울시 배수성 아스팔트 포장의 기능적 평가 연구)

  • Lee, Sang-Yum;Kim, In-Tae;Mun, Sung-Ho;Kwon, Soo-Ahn
    • International Journal of Highway Engineering
    • /
    • v.14 no.3
    • /
    • pp.33-39
    • /
    • 2012
  • The functional evaluation of constructed permeable pavements was conducted in terms of water permeable performance and noise reduction measurements in Seoul city. The field measurements of noise was based on two methods such as pass-by and novel close proximity(NCPX). The pass-by test and NCPX method are related to noise propagation and tire/pavement interaction noise measurement, respectively. For the water permeable tests, five sections were chosen; furthermore, the measurements were conducted for both of wheel path and non-wheel path area. For the pass-by measurement, three sections were chosen; furthermore, two different locations, which were near measurement point to traffic noise and far measurement point inside park or hosing complex, were selected for each section. Finally, tire/pavement interaction noise measurements were carried out at four locations. The results show that the functional performance of water permeability and noise reduction was well remained within 2 or 3 years after permeable pavement construction.

A Study on the Tire Noise (타이어 소음에 관한 연구)

  • Kim, Byoung-Sam
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.05b
    • /
    • pp.525-528
    • /
    • 2011
  • Noise emitted by driving cars affects our daily life, penetrating wherever man lives or works. There are three types of possible sound emitting processes that are aerodynamic sources, air pumping and tire vibration. In this paper, a theoretical model has been studied to describe the sound radiation by the surface vibration of running tires and experimental verification has been conducted to evaluate sound radiation characteristic due to tire vibration.

  • PDF

Analysis of Traffic Noise for Single and Double Layered Porous Pavement with SPB Method -National Route 1, Sejong-Si Section- (SPB측정법에 의한 복층 및 단층 다공성포장의 소음분석 -국도 1호선 세종시 구간-)

  • Yoo, In-Kyoon;Lee, Su-Hyung;Han, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.9
    • /
    • pp.92-102
    • /
    • 2020
  • Porous pavement (PP) has attracted attention as a new alternative measure against road traffic noise. PP refers to pavement that reduces the fines in the asphalt mixture to form voids. These voids can reduce traffic accidents and friction noise. For active application, verification of the noise reduction effect is required. In this study, the noise reduction of single-layer PP(SLPP) and double layer PP(DLPP) was analyzed. First, the Sejong section was selected, and traffic noise was measured using the SPB method on the roadside. The traffic volume, speed, and mixing ratio of large vehicles were measured. As a result, the DLPP was evaluated to be 7.95 dB(A) smaller on average and 7.57dB(A) smaller at the 95% reliability level than the SLPP. The traffic volume was more influential than the speed and the mixing rate of large vehicles. As the traffic volume increased, the noise increased, but the difference in noise between the two pavements decreased gradually. The results showed that the most effective way to reduce road traffic noise is to change the road pavement rather than reduce traffic speed, restrict traffic for heavy vehicles, or reduce traffic volume.

The analysis of tire's flexural characteristic using wave propagation (Wave Propagation 을 이용한 타이어 굽힘파 분석)

  • Hwang, S.W.;Han, J.H.;Rho, G.H.;Cho, C.T.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1237-1240
    • /
    • 2007
  • Tire noise is a major noise source at high speeds. One of the noise source is controlled by pattern and structure. Pattern noise is effected by the shape of tread. And the bending stiffness of tire is influenced to the resonance of tire‘s belt. But in high frequency region, FEA is not appropriated with application. So this paper discusses about wave propagation of tire. There has been much effort to verify the flexural wave velocity with structure design specification.

  • PDF

Vehicle Vibration Study by Tire Flat Spot (타이어 플랫 스팟에 의한 차량진동 연구)

  • Park, Ju-Pyo;Choi, Jung-Hyun;Lee, Sang-Ju
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1395-1400
    • /
    • 2007
  • Tire flat spot is a deformation which occurs around the contact patch during long-period parking and does hardly recovered even after driving. The deformation makes a tire self-excited and ride comfort gets worse. In this study, it is shown that the flat spot can be evaluated by measuring change in radial run out or force. Its effects on vibration at vehicle floor and steering wheel are also revealed. Finally it is shown that the flat spot is likely to occur if the inflation pressure is low and the tire is suppressed by a heavy load at a high temperature.

  • PDF

A Development of Vibration Isolation Technology for a Large Structure using Experimental Research (실험적 기법을 이용한 대형구조물 교통진동 차진기술 개발)

  • Ryu, B.J.;Lee, H.G.;Son, S.W.;Lee, G.S.;Han, H.H.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.537-542
    • /
    • 2006
  • This paper deals with the vibration isolation techniques for a large structure using experimental research. In the case of vibration isolation for the vicinity of a subway or a railroad station, most of vibration isolation techniques using isolation materials with high isolation efficiency only, have been applied. Therefore, the quantitative evaluation and design technologies are required for a vibration isolation of large structures. In this study, firstly, vibration characteristics due to train or subway are analyzed. Secondly, the performance of existing vibration isolation materials such as precision isolation material, elastomer is estimated through the experiments. Thirdly the performance of tire isolation material and its frame is tested and evaluated.

  • PDF

The Study of tread hardness' effect on tire pattern noise (컴파운드 경도가 타이어 패턴노이즈에 미치는 영향도)

  • Hwang, S.W.;Bang, M.S.;Kim, B.S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.690-693
    • /
    • 2006
  • As the silence of vehicle is more important, noise reduction of tire is more required. Noise of tire is divided into structure home noise and air borne noise. Tire tread has the property such as Hardness. Pattern Noise is caused by changing of tread hardness. This property has influence on the mechanisms which are Block Impact & Stick-slip sound. In the study, we found that the effect of Hardness is related to more Stick-Slip than Impact.

  • PDF

The Study On Road Noise Affected By Tread Hardness (트레드 물성이 타이어 로드노이즈에 미치는 영향도)

  • Hwang, S.W.;Kim, B.S.;Park, N.;Bang, M.J.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.266-269
    • /
    • 2006
  • Tire is in charge of a lot of function, which is supporting vehicle load, transferring traction and. brake, absorbing impact by road etc. As the silence of vehicle increase more important, the importance of tire noise is more raised. In recent, the study on reduction of tire noise is generally processed. Tire noise is divided in structure home noise and all borne noise. Tire tread properties have a lot of multiplicity. Rubber properties are caused by changing or tread hardness. That change Elastic Modulus and Loss Modulus, which is related by tire noise. In the study, we found that road noise is affected by tread hardness

  • PDF

Evaluation of Tire Lateral Hydroplaning using Measured Vehicle Acceleration (가속도 계측을 이용한 타이어 선회 수막현상의 평가)

  • Kang, Young Kyu;Hwang, JangSoon;Oh, YagJeon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.623-625
    • /
    • 2013
  • Tire hydroplaning is one of the most important tire performances, especially for safety on wet road surface. And nowadays various methods such as FEM and FVM analysis are being applied to design and improve tire hydroplaning performance, along with on-vehicle test of tire hydroplaning. Conventional evaluation of tire hydroplaning has been done by comparing peak lateral acceleration and vehicle speed in time domain. But in this paper, frequency domain analysis of lateral acceleration when hydroplaning at high speed has been carried out to get the quantitative comparison between test tires. And it is concluded that the frequency spectrum analysis of lateral acceleration gives much better discrimination, as compared to the conventional time domain analysis of lateral acceleration and vehicle speed.

  • PDF