• Title/Summary/Keyword: 타원형 원통

Search Result 34, Processing Time 0.018 seconds

Occurrence and Pathogenicity of Verticillium Wilt on Chrysanthemum Caused by Verticillium dahliae (Verticillum dahliae에 의한 국화 반쪽시들음병 발생과 병원성)

  • Han, Kyung-Sook;Park, Jong-Han;Lee, Jung-Sup;Seo, Sang-Tae;Cheong, Seung-Ryong
    • Research in Plant Disease
    • /
    • v.13 no.1
    • /
    • pp.15-19
    • /
    • 2007
  • A wilt disease on the greenhouse-grown chrysanthemum occurred at Kumi, Masan and Busan, Korea in $2003{\sim}2005$. Symptoms of wilting, yellowing, and marginal burning started from lower leaves and progressed upward. Early symptoms often appeared on one side, involving only one part of the plant or one side of individual leaves or stems without a vascular discoloration. Vascular tissues of the infected leaf-base's discolored to brown. Fungal isolates obtained from discolored tissues were identified as Verticillium dahliae based on its cultural and morphological characteristics. The fungus showed whitish to creamy colony pattern with abundant dark brown to black elongated microsclerotia on PDA. Conidiophores were verticillately branched and conidia were ellipsoidal to sub-cylindrical shape, and measured as $2.5{\sim}8.8{\times}2.0{\sim}3.8{\mu}m$. Pathogenicity tests by root dipping resulted in similar symptoms observed in the naturally infected chrysanthemum in fields.

An Electrical Conductivity Reconstruction for Evaluating Bone Mineral Density : Simulation (골 밀도 평가를 위한 뼈의 전기 전도도 재구성: 시뮬레이션)

  • 최민주;김민찬;강관석;최흥호
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.4
    • /
    • pp.261-268
    • /
    • 2004
  • Osteoporosis is a clinical condition in which the amount of bone tissue is reduced and the likelihood of fracture is increased. It is known that the electrical property of the bone is related to its density, and, in particular, the electrical resistance of the bone decreases as the bone loss increases. This implies that the electrical property of bone may be an useful parameter to diagnose osteoporosis, provided that it can be readily measured. The study attempted to evaluate the electrical conductivity of bone using a technique of electrical impedance tomography (EIT). It nay not be easy in general to get an EIT for the bone due to the big difference (an order of 2) of electrical properties between the bone and the surrounding soft tissue. In the present study, we took an adaptive mesh regeneration technique originally developed for the detection of two phase boundaries and modified it to be able to reconstruct the electrical conductivity inside the boundary provided that the geometry of the boundary was given. Numerical simulation was carried out for a tibia phantom, circular cylindrical phantom (radius of 40 mm) inside of which there is an ellipsoidal homeogenous tibia bone (short and long radius are 17 mm and 15 mm, respectively) surrounded by the soft tissue. The bone was located in the 15 mm above from the center of the circular cross section of the phantom. The electrical conductivity of the soft tissue was set to be 4 mS/cm and varies from 0.01 to 1 ms/cm for the bone. The simulation considered measurement errors in order to look into its effects. The simulated results showed that, if the measurement error was maintained less than 5 %, the reconstructed electrical conductivity of the bone was within 10 % errors. The accuracy increased with the electrical conductivity of the bone, as expected. This indicates that the present technique provides more accurate information for osteoporotic bones. It should be noted that tile simulation is based on a simple two phase image for the bone and the surrounding soft tissue when its anatomical information is provided. Nevertheless, the study indicates the possibility that the EIT technique may be used as a new means to detect the bone loss leading to osteoporotic fractures.

Development of the Trichomes in Floating Leaves of Salvinia Species (생이가래속(Salvinia) 부유엽 모용의 분화발달)

  • Seo, Ae-Ri;Kim, In-Sun
    • Applied Microscopy
    • /
    • v.38 no.2
    • /
    • pp.117-124
    • /
    • 2008
  • Salvinia is an aquatic plant forming dimorphic leaves that have been modified into floating and submerged leaves. A air of floating leaves plays an important role for the floating and photosynthesis while the submerged leaves, which are lim and long, have the form and function of root. Many aquatic plants develop trichomes in the epidermis but in Salvinia, richomes grow densely in the epidermis of the dimorphic leaves. The present study examined the differentiation pattern of trichomes developing in the floating leaves of S. natans and S. molesta by scanning and transmission electron microscopy. Trichomes developing in the floating leaves of Salvinia showed very different patterns. In S. natans, they were arranged in a V-shape form, having 20${\sim}$25 rows at $18{\sim}25^{\circ}$ on both sides of the lamina divided by the midrib in the floating leaf. In each row, 8${\sim}$10 oval-shaped cells, $200{\sim}290{\mu}m$ in length, were arranged in a spiral fashion. Four trichomes of this form made a trichome unit, but their apical parts were separated from one another and developed into the so-called 'knuckle-crane' type. On the other hand, in S. molesta, trichomes differentiated in a unique pattern quite different from those of S. natans. At the early stage of differentiation, trichomes protruded from the epidermis and then 4${\sim}$6 cylindrical cells grew $400{\sim}600{\mu}m$ long and the four trichomes formed as an unit. The four grouped trichomes were interconnected through their apex and developed in the 'egg-beater' type. Then $300{\sim}600{\mu}m$ long multi-cellular stalk cells grew and protruded out of the epidermal surface from the basal part of the trichomes. Such a structural characteristic of trichomes is considered to play a very important role along with the aerenchyma tissue in the leaf mesophyll tissue for the floating of Salvinia on the water surface.

Assessment of Attenuation Correction Techniques with a $^{137}Cs$ Point Source ($^{137}Cs$ 점선원을 이용한 감쇠 보정기법들의 평가)

  • Bong, Jung-Kyun;Kim, Hee-Joung;Son, Hye-Kyoung;Park, Yun-Young;Park, Hae-Joung;Yun, Mi-Jin;Lee, Jong-Doo;Jung, Hae-Jo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.39 no.1
    • /
    • pp.57-68
    • /
    • 2005
  • Purpose: The objective of this study was to assess attenuation correction algorithms with the $^{137}Cs$ point source for the brain positron omission tomography (PET) imaging process. Materials & Methods: Four different types of phantoms were used in this study for testing various types of the attenuation correction techniques. Transmission data of a $^{137}Cs$ point source were acquired after infusing the emission source into phantoms and then the emission data were subsequently acquired in 3D acquisition mode. Scatter corrections were performed with a background tail-fitting algorithm. Emission data were then reconstructed using iterative reconstruction method with a measured (MAC), elliptical (ELAC), segmented (SAC) and remapping (RAC) attenuation correction, respectively. Reconstructed images were then both qualitatively and quantitatively assessed. In addition, reconstructed images of a normal subject were assessed by nuclear medicine physicians. Subtracted images were also compared. Results: ELEC, SAC, and RAC provided a uniform phantom image with less noise for a cylindrical phantom. In contrast, a decrease in intensity at the central portion of the attenuation map was noticed at the result of the MAC. Reconstructed images of Jaszack and Hoffan phantoms presented better quality with RAC and SAC. The attenuation of a skull on images of the normal subject was clearly noticed and the attenuation correction without considering the attenuation of the skull resulted in artificial defects on images of the brain. Conclusion: the complicated and improved attenuation correction methods were needed to obtain the better accuracy of the quantitative brain PET images.