• Title/Summary/Keyword: 타원형 날개

Search Result 25, Processing Time 0.018 seconds

SUPERSONIC WING-NACELLE CONFIGURATION DESIGN USING AN UNSTRUCTURED ADJOINT METHOD (비구조화 Adjoint법을 이용한 초음속 날개-나셀의 공력설계)

  • Kim Hyoung-Jin;Obayashi Shigeru;Nakahashi Kazuhiro
    • Journal of computational fluids engineering
    • /
    • v.5 no.3
    • /
    • pp.32-39
    • /
    • 2000
  • 3차원 Euler 방정식과 adjoint법을 이용한 공력설계코드를 개발하였으며, 이를 초음속수송기의 주날개 설계에 적용하였다. 표면형상의 변화를 위해 Hicks-Henne함수를 사용하였으며, 내부격자점의 수정을 위해 타원형방정식법을 이용하였다. 나셀의 수직이동과 관련되지 않은 설계변수에 대해서는 내부격자점의 이동을 무시함으로써 계산시간을 크게 단축할 수 있었다. 양력과 날개단면두께를 일정하게 유지하면서 항력을 최소화하도록 단면형상을 최적화하였으며, 성공적인 결과를 얻음으로써 본 설계시스템의 타당성 및 효율성을 확인하였다.

  • PDF

A Study on the Aerodynamic Load Characteristics of an Elliptic Airfoil (타원형 날개의 공력 특성 연구)

  • 이기영;손명환;김해원
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.29-37
    • /
    • 2003
  • Using a wind tunnel testing, the aerodynamic load characteristics of an elliptic airfoil was described. The experimental data was obtained for angles of attack $-20^{\circ}$ to $+20^{\circ}$ with $2^{\circ}$ increments at a chord Reynolds number of $0.99{\times}105$ and $2.48{\times}105$. For each test case, chordwise suction pressure distributions and wake surveys were obtained. Static pressure measurements were made over a 10 sec averaging time at a 10 Hz sampling rate. For each case, wake survey was conducted with a pilot-static probe at 1.0c downstream from the trailing edge at very fine spacing to resolve the wake velocity deficit profile. As can be expected, suction pressure coefficient was increased with angle of attack. The normal force, CNmax, appeared peak value at the incidence angle of $12^{\circ}~14^{\circ}$, and the significant increase in profile drag at this range of angles of attack.

Analysis of the Influence of Ground Effect on the Aerodynamic Performance of a Wing Using Lifting-Line Method (양력선 방법을 이용한 지면효과가 날개의 공력성능에 미치는 영향 분석)

  • Lee, Chang Ho;Kang, Hyung Min;Kim, Cheolwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.4
    • /
    • pp.298-304
    • /
    • 2014
  • The lifting-line method based on Weissinger's method is extended to be able to analyze the ground effect. The method is applied to predict the variation of aerodynamic performance due to ground effect for the elliptic wing with aspect ratio of 10 and the wing of human powered aircraft. While the vortex strength of the wing increases slightly, the downwash decreases significantly as the wing approaches to the ground. For the wing of human powered aircraft, the increment of lift at the height of 2m is 5% than the lift outside the influence of ground effect. The decrease of induced drag at the height of wing span is 10% and at the height of 2m is 55% than that out of ground effect.

Study on the Aerodynamic Analysis for Wings with Various Shapes Using Lifting-line Methods (양력선 방법을 이용한 다양한 형상의 날개 공력해석에 관한 연구)

  • Lee, Chang Ho;Kang, Hyung Min;Kim, Cheolwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.12
    • /
    • pp.931-939
    • /
    • 2013
  • In this paper, we try to find the lifting-line method which is applicable to the conceptual design of aircraft wings, and analyze the accuracy and coverage of the method. Two methods that are extended from the lifting-line theory of Prandtl are selected. One of the methods is Weissinger's method which imposes the velocity boundary condition at the control points located at the quarter chord, and the other is Phillips's method which combines the three-dimensional vortex lifting law. Calculations are performed for an elliptic wing, a swept back wing, and a tapered unswept wing with dihedral angle and geometric twist. The aerodynamic data of the potential flow such as spanwise distributions of circulation and downwash, lift and induced drag are obtained through calculations, and these data are compared with theoretical results and wind tunnel test data. As a result, Weissinger's method showed good accuracy and reliability regardless of wing shapes, but Phillips's method revealed inaccurate results for a swept back wing.

Morphological Characteristics and Behavior of Oligota kashmirica benefica (Coleoptera: Sthphylinidae) (민깨알반날개(Oligota kashmirica benefica)의 형태적 특징 및 행동습성)

  • Choi Duck-Soo;Kim Kyu-Chin
    • Korean journal of applied entomology
    • /
    • v.44 no.2
    • /
    • pp.91-95
    • /
    • 2005
  • This study was conducted to investigate the morphological characteristics, overwintering sites and behavior for each stage of Oligota kashmirica benefica (Coleoptera: Sthphylinidae). Egg was oval type, yellow, 0.3 mm size. Larva exuviated 3 times and the last (3rd) instar, length 1.6 mm, wide 0.4 mm, became dermata pupa in soil. Adult was lightish dark-brown, and coriaceous forewing covered a half of abdomen. O. kashmirica benefca mainly overwinters with adult at Japanese cedar (Cryptomeria japonica) windbreaks of orchards, but it did not diapause in greenhouse during winter.

Numerical Analysis of Tip Vortex and Cavitation of Elliptic Hydrofoil with NACA 662-415 Cross Section (NACA 662-415 단면을 가지는 타원형 수중익의 날개 끝 보오텍스 및 캐비테이션 수치해석)

  • Park, Il-Ryong;Kim, Je-in;Seol, Han-Sin;Kim, Ki-Sup;Ahn, Jong-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.4
    • /
    • pp.244-252
    • /
    • 2018
  • This paper provides quantification of the effects of the turbulence model and grid refinement on the analysis of tip vortex flows by using the RANS(Reynolds averaged Navier-Stokes) method. Numerical simulations of the tip vortex flows of the NACA $66_2$-415 elliptic hydrofoil were conducted, and two turbulence models for RANS closure were tested, i.e., the Realizable $k-{\varepsilon}$ model and the Reynolds stress transport model. Numerical results were compared with available experimental data, and it was shown that the data for the Reynolds stress transport model that were computed on the finest grid system had better agreement in reproducing the development and propagation of the tip vortex. The Realizable $k-{\varepsilon}$ model overestimated the turbulence level in the vortex core and showed a diffusive behavior of the tip vortex. The tip vortex cavitation on the hydrofoil and its trajectory also showed good agreement between the current numerical results that were obtained using the Reynolds stress transport model and the results observed in the experiment.

Numerical Analysis of Heat Transfer of Aligned Wing Type Pin-Fin Array of Air Cooling Module with Various Fin Shapes for Electronic Packaging Application (날개형 핀-휜의 기하학적 형상이 전자기기 모듈 냉각용 공기냉각기의 유동 및 열전달에 미치는 영향)

  • Kim, Soo-Youn;Heo, Kyeon;Shin, Seok-Won
    • Clean Technology
    • /
    • v.14 no.4
    • /
    • pp.265-270
    • /
    • 2008
  • In this study, the flow and heat transfer of the aligned pin-fin array of the air cooling module for electronic packaging application were numerically analyzed with various fin shapes. The geometric cross-sectional shapes of pin-fins considered in this study were ellipse, wing and circle. The fins had same cross-sectional area and height, but they had different surface areas. As the results, the surface area, the heat transfer coefficient, and the heat transfer performance of pin-fins greatly depended on their shapes. Of the three types of pin-fins, the wing type pin-fin with suitable shape produced the best heat transfer performance. This result implies that the cooling capacity of the pin-fin cooler can be significantly enhanced only by the change of fin shape without increasing air flow-rate or fin density.

  • PDF

DEVELOPMENT AND APPLICATION OF AUTOMATIC GRID GENERATION PROGRAM FOR 3-D WING USING JAVA APPLET (자바 애플릿을 이용한 3차원 날개 격자 자동 생성 프로그램의 개발과 적용)

  • Lee, J.H;Cho, H.S.;Kim, Byoung-Soo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.335-340
    • /
    • 2010
  • In this paper development of an automatic grid generation program for flow field calculation around 3D wing is described and its application is also introduced. The program is developed by using JAVA programming language and a graphic library, JOGL, and it can be usee either as an application program on a local computer or as a applet in the network environment. Currently, The program provides NACA series 4-digit airfoils as the wing cross-section shape and it offers a non-complicated GUI program which can easily generate structured grids for wings based on user's parameter input. Grid generated by the program can be selected as one of two types; O-type and C-type. In this research advancing layer method(ALM) augmented by elliptic smoothing method is used for the FLUENT. It is shown that by using current program high-quality structured grids around 3D wings can be easily generated, and typical grid generation results and flow solutions are demonstrated. Study on effects of geometric parameters on flow field is also tried by changing major wing parameters such as incidence angle type of wing-tip and sweepback angle.

  • PDF

A Gear Shape of a Midwater Trawl and Its Change (중층트롤의 어구형상과 그 변화)

  • Park, Hae-Hoon;Yoon, Gab-Dong
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.38 no.3
    • /
    • pp.209-216
    • /
    • 2002
  • How to estimate the shape of trawl net and ropes of a midwater trawl on full scale was described by implementing a three-dimensional semi-analytic treatment of a towing cable system with the field experiments obtained with the Scanmar system. The shape of trawl net from wingend to the beginning of codend was assumed to be of form $\chi$$^2$/ae$^2$+ y$^2$/be$^2$=(z - c)$^2$/c$^2$, and that of the ropes attached behind otter boards be of form yr = $A\chi$rB. In case of warp length 300m long, the volume of trawl net, the ratio of net height to net width at the mouth of the trawl net, and the inclination angle of float rope were estimated according to the change of towing speed. The volume and the distance between wingtips were increased with increasing towing speed. And the inclination angle of float (or ground) rope was slightly decreased with increasing towing speed.

Flow Separation Control Effects of Blowing Jet on an Airfoil (블로잉 제트에 의한 에어포일에서의 유동박리 제어효과)

  • Lee, Ki-Young;Chung, Heong-Seok;Cho, Dong-Hyun;Sohn, Myong-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.12
    • /
    • pp.1059-1066
    • /
    • 2007
  • An experimental study has been conducted to investigate the flow separation control effects of a blowing jet on an elliptic airfoil at a Reynolds number of 7.84×105 based on the chord length. A blowing jet was obtained by pressing a plenum inside the airfoil and ejecting flow out of a thin jet slot that located in leading edge or trailing edge. The experimental results have shown that the blowing jet had an effect of suppressing the flow separation, resulting in the higher suction pressure distribution and higher normal force. The increase in Cn was more pronounced at higher incidence, whereas the effectiveness of the blowing jet reduced at lower incidences. The leading edge pulsating blowing with 90° was the most effective in controlling the flow separation than other types of blowing jet configuration tested in this research. Moreover, when the pulsating blowing was applied, the stall angle was postponed about 2°-3°. The continuous and pulsating blowing jet is a direct and effective flow separation control for improving the aerodynamic characteristics and performances of airfoil.