• Title/Summary/Keyword: 타공판

Search Result 22, Processing Time 0.023 seconds

Wave Absorbing Characteristics of a Horizontal Submerged Punching Plate (수평형 타공판의 소파특성)

  • 조일형
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.14 no.4
    • /
    • pp.265-273
    • /
    • 2002
  • In this paper, wave absorbing characteristics of a horizontal submerged punching plate are investigated throughout the calculation and the experiment. The punching plate with the array of circular holes can force the flow to separate and to form eddies of high vorticity and cause significant energy loss. As an analytic tool, the linear water wave theory and the eigenfunction expansion method is applied. Darcy's law that the normal velocity of the fluid passing through the punching plate is linearly proportional to the pressure difference between two sides of the punching plate is assumed. The proportional constant called the porous coefficient is deeply dependent to the porosity. To obtain the relationship between the porosity and the porous coefficient the systematic model test for the punching plates with 6 different porosities is conducted at 2-dimensional wave tank. It is found that the porous coefficient is linearly proportional to the porosity(b=57.63P-0.9717). It is also noted that the optimal porosity value is near P=0.1 and the optimal range of submergence depth is $d/h\\leq0.2$ within entire frequency range.

Effects of Chamfered Perforated Plate on Pressure Loss Characteristics (챔퍼가 적용된 타공판의 압력 강하 특성에 대한 연구)

  • You, Kyeongsik;Lee, Hyungyu;Cho, Jinsoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.11
    • /
    • pp.779-786
    • /
    • 2019
  • Effects of chamfered perforated plate on pressure loss characteristics were studied with CFD analysis. Both inlet chamfer angle and outlet chamfer angle were considered. Perforated patterns were compared by pressure loss coefficient in certain porosity and Reynolds number. Reynolds number effects were studied for several chamfer angles and plate thickness. As the inlet chamfer angle was increased, the pressure loss coefficient was decreased until the certain angle and reversed to increase. In the outlet chamfered shape cases, the pressure loss coefficient was increased with chamfer angle. Effects of pattern shapes and Reynolds number on pressure loss characteristics were negligible with different chamfer angles and thickness studied in this paper.

Experimental Study of Wave-Absorbing Performance by Horizontal Punching Plates (수평형 타공판에 의한 소파성능의 실험적 연구)

  • Jung H. J.;Cho I. H.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.2 no.1
    • /
    • pp.40-48
    • /
    • 1999
  • Wave absorbing system is needed at various kinds of wave basins (wave flume, towing tank, square tank) for the model test related to the ocean engineering. In this paper, the performance of wave absorbing system with new concept is estimated throughout the experiments. Herein, the wave absorbing system is designed by punching plate with a given porosity which is installed horizontally and submerged near the water surface. As the incident wave generated by a wave maker advances above a punching plate, the strong jet flow is formed near a hole of punching plate. As a result, wave energy is dissipated into heat energy, Systematic model tests were conducted at KRISO to verify the performance of the wave absorber using a punching plate. It was found that the reflection coefficient of wave absorber is deeply dependent on both the porosity and the submerged depth of a punching plate. Inclined installation of a punching plate shows better performance than a horizontal one within a certain inclined angle.

  • PDF

Design of Sound Absorbing System Using the Array of Upright Punching Plates (직립 타공판 배열을 이용한 흡음장치 설계)

  • 이종무;조일형;임용곤
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.05a
    • /
    • pp.386-391
    • /
    • 2000
  • Due to its characteristics of acoustic wave energy absorption, punched structures are generally applied on the wall of anechoic room. When the acoustic wave propagates through the punched plates, its energy dissipates into thermal energy by flow separation induced from the viscosity of acoustic media. The acoustic pressure difference between the for-side and the aft-side of punched plate ran be represented by the sum of drag term proportional to square of velocity and inertia term proportional to acceleration. The way to get the coefficients of the terms by an experiment or relatively simple calculation is introduced.

  • PDF

Numerical Analysis and Verification of Sound Absorbing Properties of Perforated Plate (타공판의 등가 흡음 물성치 유도와 공명기로서의 흡음성능 해석)

  • Yoon, Gil-Ho;Kim, Ki-Hyun;Choi, Jung-Sik;Yun, Su-Hwan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.2
    • /
    • pp.139-144
    • /
    • 2015
  • Recently, to realize sound-absorbing structures, we have to insert sound-absorbing materials into wall. These shapes are taken limitations because sound-absorbing materials should be fixed. Therefore, the sound absorption is changed by environment that used the sound-absorbing materials. On the other hand, we will take same effect without sound-absorbing material, if we change the shape of wall to sound absorbing structure. If we use this sound absorbing structure, we can get benefits by removing limitation of materials. Therefore we suggest perforated plate for effective sound-absorbing structure. We confirmed the function of sound-absorption of this structure using equivalent property. Then, we found the similarity between perforated plate and resonator. Also, we verify these theories through computer simulation by FEM(Finite Element Method). Finally, we validated that perforated plate has function of sound absorption without sound-absorbing material. This perforated plate is used for sound-absorbing material of buildings and transportations such as vehicle, train etc. Also, these results could be further used basic tool for design of sound-absorption structure.

Flow Distribution in an Electrostatic Precipitator with a Perforated Plate (타공판에 따른 전기집진기 내의 유동분포)

  • Kim, Dong-uk;Jung, Sang-Hyun;Shim, Sung-Hoon;Kim, Jin Tae;Lee, Sang-Sup
    • Clean Technology
    • /
    • v.25 no.2
    • /
    • pp.147-152
    • /
    • 2019
  • Electrostatic precipitator that shows a good performance for the removal of particulate matter is important for controlling emissions from industrial facilities and power plants. The efficiency of the electrostatic precipitator on the removal of particulate matter is highly affected by the flow pattern inside the electrostatic precipitator. A number of studies have been conducted to obtain uniform flow distribution inside electrostatic precipitators. An electrostatic precipitator (ESP) with a length of 3.5 m and a height of 0.875 m was designed and installed in this study. The ESP included an inlet duct, diffuser, body, and contractor. Three perforated plates were installed in the diffuser of the ESP. Five pitot tubes were installed vertically and used to measure flow distribution in the cross section of the ESP body. Root mean square deviation value (RMS%) was used to examine the flow distribution inside the ESP when the perforated plates were installed in the diffuser. Flow distribution was also investigated in relation to the porosity of the perforated plate. The results showed that the perforated plates improved greatly the flow distribution inside the electrostatic precipitator. In addition, the most uniform flow distribution was found with 40%, 50%, and 50% porous perforated plates located from the inlet of the diffuser.

Development of a Wave Absorbing System Using an Inclined Punching Plate (경사형 타공판을 이용한 소파장치 개발)

  • 조일형;홍석원
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.1
    • /
    • pp.1-6
    • /
    • 2004
  • In this paper, the performance of a wave absorbing system using an inclined punching plate, was investigated. Using the multi-domain boundary element method (BEM), the reflection coefficients of an inclined punching plate were tested with various design parameters, such as inclined angle, porosity, and wave frequencies. To confirm the numerical solutions, the systematic model test was conducted at 2-D tank and square tank. The numerical results were in good agreement with the experimental results within the entire frequency range. It was found that an inclined punching plate had an excellent wave absorbing efficiency, compared to a horizontal one. Also, the optimal range of an inclined angle had an excellent wave absorbing efficiency, compared to a horizontal one the optimal range of the inclined angle is 10°<β<20°. The developed wave absorber was installed at KRISO's square basin, and is working effectively for various model tests.

Performance Improvement of Hot-Air Dryer Through Optimum Round-Hole Plate (최적의 타공판을 통한 열풍건조로 성능향상 연구)

  • Seo, Eung Soo;Kim, Yongsik;Hwang, Joong Kook;Chai, Young Suck;Shim, Jaesool
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.9
    • /
    • pp.947-954
    • /
    • 2015
  • The homogeneous coating of a flexible film that is applied to dye-sensitized solar cells is related to the performance and durability of the product. The applied coating is obtained from the uniform temperature distribution and the mass flow rate in the nozzle of the hot air dryer. In this study, we determine the uniform temperature distribution and mass flow rate of each nozzle by performing numerical simulations to understand how various factors affect the performance of the hot air dryer. The numerical model is composed of the momentum equation for flow motion and the energy equation for temperature. In addition, we compare the numerical results to the experimental results to validate the model. Based on the results, the round-hole plate inside the hot air dryer significantly affects the uniform temperature and the mass flow rate.

Porous modeling for the prediction of pressure drop through a perforated strainer (타공형 스트레이너의 압력강하 예측을 위한 다공성모델링)

  • Jung, Il-Sun;Park, Jae-Hyun;Bae, Jae-Hwan;Kang, Sangmo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.358-367
    • /
    • 2013
  • In the present paper, we apply a porous modelling technique to accurately predict the pressure drop through the strainer by replacing all or some of the filter composed of perforated plates with porous media and there imposing the streamwise and transverse loss coefficients required according to the Forchheimer law and then confirm its effectiveness. At first, the streamwise coefficient is obtained by performing a simple simulation on the pipe flow mimicking the hole flow. Subsequently, the transverse coefficient is obtained by setting a unit pattern to have common flow loss characteristics with the repeated shape patterns in the filter, then performing numerical simulations on the prototype and porous model of the unit shape pattern, and finally comparing their results of pressure drop. To validate the applied modeling technique, we perform the numerical simulation with the two specified loss coefficients on a whole shape of strainer and compare the modeling results with those of the corresponding prototype numerical simulation. Comparison indicates that the modeling technique can predict the pressure drop and flow characteristics comparatively accurately and save the number of nodes closely related to the computational cost (CPU and memory) by about 3~4 times compared with the prototype simulation.

Investigation of Sound Absorbing Characteristics of the Railway Noise Barrier by Changing the Configuration of the Front Perforated Panel and Absorbing Material (철도 방음벽의 전면 타공과 흡음재에 의한 흡음성능 고찰)

  • Kim, Kwanju;Kim, Sanghun;Park, Jinkyu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.575-580
    • /
    • 2013
  • This study focused on the identification of sound characteristics according to the configuration of sound absorption material and perforated panel dimensions. Noise barriers consist of front perforated panel, sound absorption material and back plate. Noise barriers' acoustic performance should be required to meet the NRC of 0.7. The absorbing performance of the noise barrier relies on the opening ratio of perforated panel and the efficiency of the absorbing material. This study try to find out the possibilities of applications to railway usage.

  • PDF