• Title/Summary/Keyword: 클러스터 헤드 교체

Search Result 15, Processing Time 0.026 seconds

The Threshold Based Cluster Head Replacement Strategy in Sensor Network Environment (센서 네트워크 환경의 임계값 기반 클러스터 헤드 지연 교체 전략)

  • Kook, Joong-Jin;Ahn, Jae-Hoon;Hong, Ji-Man
    • Journal of Internet Computing and Services
    • /
    • v.10 no.3
    • /
    • pp.61-69
    • /
    • 2009
  • Most existing clustering protocols have been aimed to provide balancing the residual energy of each node and maximizing life-time of wireless sensor networks. In this paper, we present the threshold based cluster head replacement strategy for clustering protocols in wireless sensor networks. This protocol minimizes the number of cluster head selection by preventing the cluster head replacement up to the threshold of residual energy. Reducing the amount of head selection and replacement cost, the life-time of the entire networks can be extended compared with the existing clustering protocols. Our simulation results show that our protocol outperformed than LEACH in terms of balancing energy consumption and network life-time.

  • PDF

A cluster head replacement based on threshold in the Internet of Things (사물인터넷에서 임계치 기반의 클러스터 헤드 교체 기법)

  • Kim, Jeong-Won
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.11
    • /
    • pp.1241-1248
    • /
    • 2014
  • An efficient battery usage of sensor nodes is main goal in a sensor network, which is the substructure of Internet of Things. Maximizing the battery usage of sensor nodes makes the lifetime of sensor network increase as well as the reliability of the network improved. The previous solutions to solve these problems are mainly focused on the cluster head selection based on the remaining energy. In this paper, we consider both the head selection and the replacement interval which is determined by a threshold that is based on the remaining energy, density of alive nodes, and location. Our simulation results show that the proposed scheme has outstanding contribution in terms of maximizing the life time of the network and balancing energy consumption of all nodes.

A Cluster Formation Scheme with Remaining Energy Level of Sensor Nodes in Wireless Sensor Networks (무선 센서 네트워크에서 잔여 에너지 레벨을 이용한 클러스터 형성 기법)

  • Jang, Kyung-Soo;Kangm, Jeong-Jin;Kouh, Hoon-Joon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.6
    • /
    • pp.49-54
    • /
    • 2009
  • Sensor nodes in wireless sensor networks operate in distributed environments with limited resources and sensing capabilities. Especially, a sensor node has a small energy. After the sensor nodes are distributed in some area, it is not accessible to the area. AIso, a battery of sensor node cannot change. One of the hot issues in wireless sensor networks maximizes the network lifetime through minimizing the energy dissipation of sensor nodes. In LEACH, the cluster head is elected based on a kind of probability method without considering remaining energy of sensor node. In this paper, we propose a cluster formation scheme that the network elect the node, which has higher energy level than average energy level of overall sensor network, as cluster head node. We show the superiority of our scheme through computer simulation.

  • PDF

An Analysis of Threshold-sensitive Variable Area Clustering protocol in Wireless Sensor Networks (무선 센서 네트워크 환경의 Threshold-sensitive 가변 영역 클러스터링 프로토콜에 관한 분석)

  • Choi, Dang-Min;Moh, Sang-Man;Chung, Il-Yang
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.11
    • /
    • pp.1609-1622
    • /
    • 2009
  • In wireless sensor networks, a clustering protocol is an efficient method to prolong network lifetime. In general, it results in more energy consumption at the cluster-head node. Hence, such a protocol must changes the cluster formation and cluster-head node in each round to prolong the network lifetime. But, this method also causes large amount of energy consumption during the set-up process of cluster formation. In order to improve energy efficiency, in this paper, we propose a new clustering algorithm. In this algorithm, we exclude duplicated data of adjacent nodes and transmits the threshold value. We define a group as the sensor nodes within close proximity of each other. In a group, a node senses and transmits data at a time on the round-robin basis. In a view of whole network, group is treated as one node. During the setup phase of a round, intra clusters are formed first and then they are re-clustered(network cluster) by choosing cluster-heads(group). In the group with a cluster-head, every member node plays the role of cluster-head on the round-robin basis. Hence, we can lengthen periodic round by a factor of group size. As a result of analysis and comparison, our scheme reduces energy consumption of nodes, and improve the efficiency of communications in sensor networks compared with current clustering methods.

  • PDF

An Energy Efficient Variable Area Routing protocol in Wireless Sensor networks (무선 센서 네트워크에서 에너지 효율적인 가변 영역 라우팅 프로토콜)

  • Choi, Dong-Min;Moh, Sang-Man;Chung, Il-Yong
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.8
    • /
    • pp.1082-1092
    • /
    • 2008
  • In wireless sensor networks, clustering protocol such as LEACH is an efficient method to increase whole networks lifetime. However, this protocol result in high energy consumption at the cluster head node. Hence, this protocol must changes the cluster formation and cluster head node in each round to prolong the network lifetime. But this method also causes a high amount of energy consumption during the set-up process of cluster formation. In order to improve energy efficiency, in this paper, we propose a new cluster formation algorithm. In this algorithm, we define a intra cluster as the sensor nodes within close proximity of each other. In a intra cluster, a node senses and transmits data at a time on the round-robin basis. In a view of whole network, intra cluster is treated as one node. During the setup phase of a round, intra clusters are formed first and then they are re-clustered(network cluster) by choosing cluster-heads(intra clusters). In the intra cluster with a cluster-head, every member node plays the role of cluster-head on the round-robin basis. Hence, we can lengthen periodic round by a factor of intra cluster size. Also, in the steady-state phase, a node in each intra cluster senses and transmits data to its cluster-head of network cluster on the round-robin basis. As a result of analysis and comparison, our scheme reduces energy consumption of nodes, and improve the efficiency of communications in sensor networks compared with current clustering methods.

  • PDF

A Study on Improvement of Energy Efficiency for LEACH Protocol in WSN (WSN에서 LEACH 프로토콜의 에너지 효율 향상에 관한 연구)

  • Lee, Won-Seok;Ahn, Tae-Won;Song, ChangYoung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.3
    • /
    • pp.213-220
    • /
    • 2015
  • Wireless sensor network(WSN) is made up of a lot of battery operated inexpensive sensors that, once deployed, can not be replaced. Therefore, energy efficiency of WSN is essential. Among the methods for energy efficiency of the network, clustering algorithms, which divide a WSN into multiple smaller clusters and separate all sensors into cluster heads and their associated member nodes, are very energy efficient routing technique. The first cluster-based routing protocol, LEACH, randomly elects the cluster heads in accordance with the probability. However, if the distribution of selected cluster heads is not good, uniform energy consumption of cluster heads is not guaranteed and it is possible to decrease the number of active nodes. Here we propose a new routing scheme that, by comparing the remaining energy of all nodes in a cluster, selects the maximum remaining energy node as a cluster head. Because of decrease in energy gap of nodes, the node that was a cluster head operates as a member node much over. As a result, the network lifespan is increased and more data arrives at base station.

A weight-based cluster head replacement algorithm in the Internet of Things (사물인터넷에서 가중치 기반 클러스터 헤드 교체 알고리즘)

  • Kim, Jeong-Won
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.11
    • /
    • pp.91-96
    • /
    • 2014
  • Since the sensors of Internet of Things (IOT) collect various data, the lifetime of sensor network is very important and the data should be aggregated efficiently. The contiguous collection by the certain sensors occurs an excessive battery consumption and successive transmission of same value of data should be avoided. To solve these things, we propose an weight-based cluster head replacement method that divides whole network into several grids and cluster head is selected by remaining energy, density of alive sensors and location of sensor. The aim of algorithm maximizes the lifetime of network. Our simulation results shows that the proposed method is very simple as well as balances energy consumption.

Design and Implementation of the Parallel Multimedia File System on Fast Ethernet (Fast Ethernet 환경에서 병렬 멀티미디어 파일 시스템의 설계와 구현)

  • Park, Seong-Ho;Kim, Gwang-Mun;Jeong, Gi-Dong
    • The KIPS Transactions:PartB
    • /
    • v.8B no.1
    • /
    • pp.89-97
    • /
    • 2001
  • 대용량 멀티미디어 미디어 서버를 구성함에 있어 I/O 병목현상을 극복하기 위하여 저장 서버들과 제어 서버로 구성되어진 2계층 분산 클러스터 서버구조가 많이 사용된다. 2 계층 분산 클러스터 서버는 부하 균등, 대역폭 관리 및 저장 서버의 관리 측면에서 유리한 반면, 저장 서버와 제어 서버간의 통신 오버헤드를 발생시킨다. 이러한 오버헤드를 줄이기 위해서는 저장 서버에서 읽은 미디어 데이터를 제어 서버를 거치지 않고 직접 클라이언트에 전송할 수 있어야 한다. 그리고, 저장 용량을 확장하거나 손상된 디스크를 교체하는 경우를 대비하여 분산 클러스터 서버는 다양한 성능의 이기종 디스크를 지원하여야 한다. 또한, I/O 장치와 운영체제가 빠르게 발전됨에 따라 미디어 서버는 새로운 I/O 장치 및 운영체제 등에 쉽게 이식될 수 있어야 하고, 응용 소프트웨어 개발자가 시스템의 환경에 따라 블록크기, 데이터 배치정책, 사본 정책 등을 유연하게 조절할 수 있어야 한다. 본 논문에서 위에서 언급한 멀티미디어 서버의 요구를 고려하여 Fast Ethernet 환경에서 병렬 멀티미디어 파일 시스템(PMFS : Parallel Multimedia File System)을 설계 및 구현하고 실험을 통해 PVFS(Parallel Virtual File System)와 성능을 비교 분석하였다. 이 실험의 결과에 따르면 PMFS는 멀티미디어 데이터에 대하여 PVFS보다 3%∼15%의 향상된 성능을 보였다.

  • PDF

An Energy-Efficient Clustering Using Division of Cluster in Wireless Sensor Network (무선 센서 네트워크에서 클러스터의 분할을 이용한 에너지 효율적 클러스터링)

  • Kim, Jong-Ki;Kim, Yoeng-Won
    • Journal of Internet Computing and Services
    • /
    • v.9 no.4
    • /
    • pp.43-50
    • /
    • 2008
  • Various studies are being conducted to achieve efficient routing and reduce energy consumption in wireless sensor networks where energy replacement is difficult. Among routing mechanisms, the clustering technique has been known to be most efficient. The clustering technique consists of the elements of cluster construction and data transmission. The elements that construct a cluster are repeated in regular intervals in order to equalize energy consumption among sensor nodes in the cluster. The algorithms for selecting a cluster head node and arranging cluster member nodes optimized for the cluster head node are complex and requires high energy consumption. Furthermore, energy consumption for the data transmission elements is proportional to $d^2$ and $d^4$ around the crossover region. This paper proposes a means of reducing energy consumption by increasing the efficiency of the cluster construction elements that are regularly repeated in the cluster technique. The proposed approach maintains the number of sensor nodes in a cluster at a constant level by equally partitioning the region where nodes with density considerations will be allocated in cluster construction, and reduces energy consumption by selecting head nodes near the center of the cluster. It was confirmed through simulation experiments that the proposed approach consumes less energy than the LEACH algorithm.

  • PDF

An Energy-Efficient Clustering Design Apply Security Method in Ubiquitous Sensor Networks (USN에서 보안을 적용한 에너지 효율적 클러스터링 설계)

  • Nam, Do-Hyun;Min, Hong-Ki
    • Journal of IKEEE
    • /
    • v.11 no.4
    • /
    • pp.205-212
    • /
    • 2007
  • The ubiquitous sensor network consists of micro sensors with wireless communication capabilities. Compared to wired communication, wireless communication is more subject to eavesdropping as well as data variation and manipulation. Accordingly, there must be efforts to secure the information delivered over the sensor network. Providing security to the sensor network, however, requires additional energy consumption, which is an important issue since energy transformation is difficult to implement in a sensor network. This paper proposes a routing mechanism based on the energy-efficient cluster that features security functions capable of safely processing the data acquired from the sensor network. The proposed algorithm reduces energy consumption by fixing the clusters formed at the initial stage and using the pre-distribution scheme so that the cluster and node keys generated and exchanged at the initial stage are not re-generated or re-exchanged. Simulation experiments confirmed that the proposed approach reduces energy consumption compared to implementing security measures to the conventional cluster-based routing mechanism.

  • PDF