• 제목/요약/키워드: 클러스터링 검증 함수

검색결과 11건 처리시간 0.028초

영상 분할을 위한 개선된 공간적 퍼지 클러스터링 알고리즘 (An Enhanced Spatial Fuzzy C-Means Algorithm for Image Segmentation)

  • 퉁 투룽;김종면
    • 한국컴퓨터정보학회논문지
    • /
    • 제17권2호
    • /
    • pp.49-57
    • /
    • 2012
  • FCM(fuzzy c-means)은 일반적으로 영상 분할에서 좋은 성능을 보인다. 하지만 공간 정보를 사용하지 않는 일반적인 FCM 알고리즘은 낮은 대비의 영상, 경계선이 뚜렷하지 않은 영상, 잡음이 포함된 영상의 분할에는 좋지 않은 성능을 보인다. 이와 같은 문제를 해결하기 위해 본 논문에서는 3x3 크기의 윈도우를 이용하여 윈도우 내의 중심 픽셀과 주변 픽셀간의 거리 정보를 소속 함수에 추가한 개선된 공간적 퍼지 클러스터링 알고리즘을 제안한다. 본 논문에서는 분할 계수, 분할 엔트로피, Xie-Bdni 함수와 같은 클러스터링 검증 함수를 이용하여 FCM 기반의 다양한 클러스터링 알고리즘과 제안한 알고리즘과의 성능을 비교하였다. 성능 평가 결과 제안한 알고리즘이 기존의 FCM기반의 클러스터링 알고리즘보다 클러스터링 검증 함수에서 성능이 우수함을 확인 할 수 있었다.

적응성 있는 차분 진화에 의한 함수최적화와 이벤트 클러스터링 (Function Optimization and Event Clustering by Adaptive Differential Evolution)

  • 황희수
    • 한국지능시스템학회논문지
    • /
    • 제12권5호
    • /
    • pp.451-461
    • /
    • 2002
  • 차분 진화는 다양한 형태의 목적함수를 최적화하는데 매우 효율적인 방법임이 입증되었다 차분 진화의 가장 큰 이점은 개념적 단순성과 사용의 용이성이다. 그러나 차분 진화의 수렴성이 제어 파라미터에 매우 민감한 단점이 있다. 본 논문은 새로운 교배용 벡터 생성법과 제어 파라미터의 적응 메커니즘을 결합한 적응성 있는 차분 진화를 제안한다. 이는 수렴성을 해치지 않으면서 차분 진화를 보다 강인하게 만들며 사용이 쉽도록 해준다. 12가지 최적화 문제에 대해 제안한 방법을 시험하였다. 적응성 있는 차분 진화의 응용 사례로써 이벤트 예측을 위한 교사 클러스터링 방법을 제안한다. 이 방법을 진화에 의한 이벤트 클러스터링이라 부르며 데이터 모델링 검증에 널리 사용되는 4 가지 사례에 대해 그 성능을 시험하였다.

내부클러스터를 이용한 개선된 FCM 알고리즘에 대한 연구 (A Study on the Modified FCM Algorithm using Intracluster)

  • 안강식;조석제
    • 정보처리학회논문지B
    • /
    • 제9B권2호
    • /
    • pp.202-214
    • /
    • 2002
  • 본 논문에서는 FCM알고리즘과 평균내부거리를 적용한 퍼지 클러스터링 알고리즘의 문제점을 해결하기 위하여 개선된 FCM 알고리즘을 제안한다. 개선된 FCM 알고리즘은 내부클러스터를 이용하여 클러스터 크기가 다른 경우에도 크기가 작은 클러스터에 일정한 소속정도를 부여할 수 있다. 그리고 이에 맞는 목적함수를 설계하고 검증한 후 데이터 분류에 사용하기 때문에 목적함수의 수렴성 문제를 극복할 수 있다. 그러므로 클러스터 크기가 다른 경우에 발생하는 FCM 알고리즘의 문제점과 목적함수의 수렴성에 문제가 있는 평균내부거리를 적용한 퍼지 클러스터링 알고리즘의 문제점을 해결할 수 있다. 제안한 알고리즘을 검증하기 위하여 제안한 알고리즘을 이용하여 데이터를 분류한 결과를 FCM 알고리즘, 평균 내부거리를 적용한 퍼지 클러스터링 알고리즘을 이용하여 데이터를 분류한 결과와 각각 비교하였다. 실험을 통하여 제안한 알고리즘으로 데이터를 분류할 경우 분류 엔트로피에 의해 기존의 알고리즘들보다 더 좋은 결과를 나타냄을 알 수 있었다.

함수 근사화를 위한 강인한 TSK 퍼지 모델링 (Robust TSK-fuzzy modeling for function approximation)

  • 김경중;김은태;박민용
    • 전자공학회논문지CI
    • /
    • 제42권1호
    • /
    • pp.59-65
    • /
    • 2005
  • 본 논문에서는 새로운 강인한 TSK 퍼지 모델링 알고리즘을 제안한다. 데이터에 노이즈나 아웃라이어가 존재할 때 모델링하기 위한 다양한 강인한 접근법이 제안되었지만 주로 손실함수를 사용하여 아웃라이어나 노이즈의 효과를 감소시키는 접근방법들이 수행되었다. 제안된 알고리즘은 노이즈 클러스터링의 변형된 형태로, 손실함수를 사용하지 않고 노이즈를 하나의 클래스로 클러스터링하는 방법을 채택하였다. 노이즈 클러스터링은 포로토타입 기반의 클러스터링 알고리즘으로, 리그레션을 할 수 없기 때문에 먼저 데이터를 클러스터링한 후 다음으로 퍼지 리그레션을 수행한다. 전건부와 후건부의 매개변수를 동시에 얻기 위한 다른 방법들이 고안되었지만 그들 알고리즘들은 매개변수를 구한 후 좀더 정확한 함수의 근사화를 위해 매개변수에 대한 적응과정을 거친다. 본 논문에서는 노이즈 클러스터링 알고리즘을 변경하여 함수의 리그레션을 동시에 수행 할 수 있게 하였다. 제안된 알고리즘은 전건부와 후건부의 매개변수를 동시에 얻을 수 있으며, 매개변수를 구한 후 이에 대한 적응과정이 필요하지 않다. 제안된 알고리즘의 검증을 위하여 몇 가지 간단한 예제를 사용하여 실험하였으며, 기존에 연구된 다른 알고리즘과 비교, 분석하였다. 제안된 알고리즘은 노이즈나 아웃라이어에 대하여 강인한 성능을 보이며, 구현이 용이하다.

고차원 데이터 처리를 위한 SVM기반의 클러스터링 기법 (SVM based Clustering Technique for Processing High Dimensional Data)

  • 김만선;이상용
    • 한국지능시스템학회논문지
    • /
    • 제14권7호
    • /
    • pp.816-820
    • /
    • 2004
  • 클러스터링은 데이터 집합을 유사한 데이터 개체들의 클러스터들로 분할하여 데이터 속에 존재하는 의미 있는 정보를 얻는 과정이다. 클러스터링의 주요 쟁점은 고차원 데이터를 효율적으로 클러스터링하는 것과 최적화 문제를 해결하는 것이다. 본 논문에서는 SVM(Support Vector Machines)기반의 새로운 유사도 측정법과 효율적으로 클러스터의 개수를 생성하는 방법을 제안한다. 고차원의 데이터는 커널 함수를 이용해 Feature Space로 매핑시킨 후 이웃하는 클러스터와의 유사도를 측정한다. 이미 생성된 클러스터들은 측정된 유사도 값과 Δd 임계값에 의해서 원하는 클러스터의 개수를 얻을 수 있다. 제안된 방법을 검증하기 위하여 6개의 UCI Machine Learning Repository의 데이터를 사용한 결과, 제시된 클러스터의 개수와 기존의 연구와 비교하여 향상된 응집도를 얻을 수 있었다.

개선 클러스터링 화음탐색법 개발 및 다양한 최적화문제에 적용 (Development of Improved Clustering Harmony Search and its Application to Various Optimization Problems)

  • 최지호;정동휘;김중훈
    • 한국산학기술학회논문지
    • /
    • 제19권3호
    • /
    • pp.630-637
    • /
    • 2018
  • 본 연구에서는 최적화 기법의 하나인 화음탐색법 (HS: Harmony Search)에 클러스터링 기법을 적용하여 개선된 형태의 HS를 제안하였다. HS는 음악의 즉흥연주를 모방하여 개발되었으며 무작위선택, 기억회상, 음조조정의 세 가지 연산을 이용하여 최적해를 반복적으로 탐색해 나간다. 기존의 HS의 경우, 세 가지 연산 중 기억회상을 진행할 때 해집단의 저장 공간인 해저장소 (HM: Harmony Memory)에 있는 해를 선택하는데, 이 과정에서 적합도를 정량화한 목적함수 값에 상관없이 모두 동일한 확률로 해의 선택이 이루어지고, 이에 따라 최적의 해를 탐색하는 속도가 상대적으로 낮다. 본 연구에서 제안한 개선 클러스터링 화음탐색법 (ICHS: Improved Clustering Harmony Search)는 HM에서 목적함수의 값을 기준으로 클러스터링 기법을 적용하여 목적함수 값이 유사한 솔루션들이 하나의 해집단을 형성하도록 클러스터링을 수행한다. 이를 통해 만들어진 클러스터 중 상대적으로 목적함수 값이 우수한 클러스터에는 더 높은 선택 확률을 부여하여, 적합도가 높은 클러스터에 포함된 해의 결정변수가 선택될 확률을 높게 하는 역할을 한다. 본 연구에서는 ICHS의 효율성을 검증하기 위하여 개발 기법을 기존 논문에서 제시된 수학적 최적화 문제에 적용하였고 우수한 해탐색 성능을 확인할 수 있었다. 또한 실제 공학 문제에 대한 적용성 평가를 위해 개발 기법을 대규모 상수도관망 관경최적화 문제에 적용하였다. 상수도관망 최적설계에 대한 ICHS의 적용 결과, 기존 최적화 기법에 비해 우수한 해를 안정적으로 도출할 수 있는 것으로 나타났다.

인공신경망모형(다층퍼셉트론, 방사형기저함수), 사회연결망모형, 타부서치모형을 이용한 컨테이너항만의 클러스터링 측정 및 2단계(Type IV) 교차효율성 메트릭스 군집모형을 이용한 실증적 검증에 관한 연구 (A Study on Containerports Clustering Using Artificial Neural Network(Multilayer Perceptron and Radial Basis Function), Social Network, and Tabu Search Models with Empirical Verification of Clustering Using the Second Stage(Type IV) Cross-Efficiency Matrix Clustering Model)

  • 박노경
    • 예술인문사회 융합 멀티미디어 논문지
    • /
    • 제9권6호
    • /
    • pp.757-772
    • /
    • 2019
  • 본 논문에서는 아시아 38개 컨테이너항만 들을 대상으로 10년(2007년-2016년)동안의 4개의 투입요소(선석길이, 수심, 총면적, 크레인 수)와 1개의 산출요소(컨테이너화물 처리량)를 이용하여 인공신경망모형(다층퍼셉트론, 방사형기저함수)으로 클러스터링에 영향을 미친 요소들을 파악하였으며, 1단계 교차효율성 메트릭스를 이용한 군집 수를 사회연결망모형과 타부서치모형에 적용하여 클러스터링을 파악하고 효율성을 측정하였다. 또한 2단계효율성 메트릭스모형을 이용한 클러스터링을 파악하고 효율성을 측정하여 1단계 교차효율성 메트릭스에 의한 측정결과와 비교하였다. 주요한 실증분석 결과는 다음과 같다. 첫째, 인공신경망모형에 의해서 측정해 보았을 때, 군집에 영향을 많이 미친 요소별로 제시해 보면 컨테이너화물 처리량, 선석길이와 수심, 총면적, 크레인 수의 순서로 나타났다. 둘째, 사회연결망분석에서는 2단계 교차효율성(Type IV)메트릭스에 의한 군집은 benevolent 와 aggressive 모형에서 매년 동일한 결과를 보였다. 셋째, 클러스터링 후에 1단계 교차효율성 모형에 비해서 사회연결망 모형 분석과 타부서치 모형 분석에서 국내항만들의 효율성이 거의(사회연결망 모형에서 인천항의 경우 제외) 악화되는 것으로 나타났다. 다섯째, 일반적인 투입지향, 규모수확불변하의 CCR모형의 효율성 측정결과와 비교했을 때는 클러스터링이 모든 항만들에 대해서 약 37%이상의 효율성을 증대시켰다. 여섯째, 사회연결망모형과 타부서치모형에 의해서 클러스터링 되는 항만들은 부산항(고베, 오사카, 포트클랑, 탄중 펠파스, 마닐라항), 인천항(사히드 라자히, 광양), 광양항(아카바, 포트 슐탄 카바스, 담만, 크호르 파칸, 인천)으로 나타났다. 한국항만당국은 본 연구에서 이용된 방법을 도입하여 항만개선방안을 마련해야만 한다.

계층적 센서네트워크에서 에너지 효율성을 위한 최적의 클러스터 비율 분석 (An Analysis of Energy Efficient Cluster Ratio for Hierarchical Wireless Sensor Networks)

  • 김자룡;김대영;조진성
    • 한국통신학회논문지
    • /
    • 제38B권6호
    • /
    • pp.446-453
    • /
    • 2013
  • 무선 센서네트워크에서 클러스터링 기법은 네트워크 확장성과 네트워크 수명 연장에 효율적이라고 인정받고 있다. 본 논문에서는 클러스터 기반 센서 네트워크에서 multi-hop to one-hop 전송 환경을 고려하여 에너지 효율성에 최적인 클러스터 비율(cluster ratio, CR)을 분석하는데 초점을 둔다. 본 논문에서는 지정한 클러스터 비율을 통한 시스템 홉 수(hop-count) 최소화와 노드 간 패킷수신율(packet reception ratio, PRR) 최대화 사이의 이해득실(trade-off) 관계를 분석하고 이 두 요소를 종합적으로 고려하여 목표함수를 유도한다. 제안한 목표함수를 통하여 얻은 최적의 클러스터 비율은 네트워크에서 패킷 전송에 드는 비용뿐만 아니라 노드 간 재전송 오버헤드를 줄여줌으로써 에너지 효율성을 향상시킨다. 본 논문에서 제안한 기법은 최소 홉 수 클러스터링 방안과 비교되며 시뮬레이션을 통하여 향상된 에너지 효율성을 검증하였다.

퍼지 멤버쉽 함수로 최적화된 LVQ를 이용한 패턴 분류 모델 (Pattern Classification Model using LVQ Optimized by Fuzzy Membership Function)

  • 김도현;강민경;차의영
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제29권8호
    • /
    • pp.573-583
    • /
    • 2002
  • 패턴인식은 전처리 과정에서 패턴들의 특징을 추출하고 이를 학습을 통하여 유사한 패턴들끼리 클러스터링을 한 다음 식별 과정을 거쳐 인식하게 된다. 본 연구에서는 OCR 시스템에서의 패턴 인식을 위한 패턴 분류 모델로서 퍼지 멤버쉽 함수를 도입하여 LVQ 학습 알고리즘을 최적화한 F-LVQ(Fuzzy Learning Vector Quantization)를 제안한다 본 논문의 효율성을 검증하기 위하여 한글 및 영어 22종의 글꼴에 대한 숫자 데이타 220개 패턴을 학습한 후 이를 다양한 형태로 변형시킨 4840개의 테스트 패턴에 대하여, 기존의 여러 가지 패턴 분류 모델과의 비교 분석을 통해 그 유효성과 강인성을 증명하였다.

멀티채널 비음수 행렬분해와 정규화된 공간 공분산 행렬을 이용한 미결정 블라인드 소스 분리 (Underdetermined blind source separation using normalized spatial covariance matrix and multichannel nonnegative matrix factorization)

  • 오순묵;김정한
    • 한국음향학회지
    • /
    • 제39권2호
    • /
    • pp.120-130
    • /
    • 2020
  • 본 논문은 블라인드 소스 분리 분야에서 널리 사용되는 멀티채널 비음수 행렬 분해 기법의 단점을 개선하여 미결정 복잡한 혼합 환경에서 문제를 해결한다. 공간 공분산 행렬에 기반을 둔 기존의 연구들에서, 단일 채널의 파워게인 및 상관관계와 같은 값으로 구성된 행렬의 각 요소는 높은 분산으로 인해 분리된 소스의 품질을 저하시키는 경향이 있다. 이 논문에서는 추정된 소스들을 효과적으로 클러스터링하기 위해 레벨 및 주파수 정규화를 수행한다. 따라서 새로운 공간 공분산 행렬 및 효과적인 클러스터 쌍별 거리함수를 제안한다. 본 논문에서는 제안된 행렬을 공간 모델의 초기화에 활용하여 공간 모델의 향상된 추정과 이를 바탕으로 상향식 접근법에서의 계층적 응집 클러스터링에 활용함으로써 분리된 음원의 품질을 향상시켰다. 제안된 알고리즘은 'Signal Separation Evaluation Campaign 2008 development dataset'을 활용하여 실험을 하였다. 그 결과 객관적인 소스 분리 품질 검증 도구인 'Blind Source Separation Eval toolbox'를 활용하여 대부분의 성능향상지표에서의 향상을 확인하였으며, 특히 대표적인 수치인 SDR의 1 dB ~ 3.5 dB 정도의 성능우위를 검증하였다.