There are various items in the safety and health standards of the manufacturing industry, but they can be divided into work-related diseases and musculoskeletal diseases according to the standards for sickness and accident victims. Musculoskeletal diseases occur frequently in manufacturing and can lead to a decrease in labor productivity and a weakening of competitiveness in manufacturing. In this paper, to detect the musculoskeletal harmful factors of manufacturing workers, we defined the musculoskeletal load work factor analysis, harmful load working postures, and key points matching, and constructed data for Artificial Intelligence(AI) learning. To check the effectiveness of the suggested dataset, AI algorithms such as YOLO, Lite-HRNet, and EfficientNet were used to train and verify. Our experimental results the human detection accuracy is 99%, the key points matching accuracy of the detected person is @AP0.5 88%, and the accuracy of working postures evaluation by integrating the inferred matching positions is LEGS 72.2%, NECT 85.7%, TRUNK 81.9%, UPPERARM 79.8%, and LOWERARM 92.7%, and considered the necessity for research that can prevent deep learning-based musculoskeletal diseases.
KIPS Transactions on Software and Data Engineering
/
v.12
no.5
/
pp.199-206
/
2023
The current software becomes the huge size of source codes. Therefore it is increasing the importance and necessity of static analysis for high-quality product. With static analysis of the code, it needs to identify the defect and complexity of the code. Through visualizing these problems, we make it guild for developers and stakeholders to understand these problems in the source codes. Our previous visualization research focused only on the process of storing information of the results of static analysis into the Database tables, querying the calculations for quality indicators (CK Metrics, Coupling, Number of function calls, Bad-smell), and then finally visualizing the extracted information. This approach has some limitations in that it takes a lot of time and space to analyze a code using information extracted from it through static analysis. That is since the tables are not normalized, it may occur to spend space and time when the tables(classes, functions, attributes, Etc.) are joined to extract information inside the code. To solve these problems, we propose a regularized design of the database tables, an extraction mechanism for quality metric indicators inside the code, and then a visualization with the extracted quality indicators on the code. Through this mechanism, we expect that the code visualization process will be optimized and that developers will be able to guide the modules that need refactoring. In the future, we will conduct learning of some parts of this process.
Journal of the Korea Society of Computer and Information
/
v.28
no.10
/
pp.27-35
/
2023
In this paper, we propose a process of increasing productivity by applying a deep learning-based defect detection and classification system to the prepreg fiber manufacturing process, which is in high demand in the field of producing composite materials. In order to apply it to toe prepreg manufacturing equipment that requires a solution due to the occurrence of a large amount of defects in various conditions, the optimal environment was first established by selecting cameras and lights necessary for defect detection and classification model production. In addition, data necessary for the production of multiple classification models were collected and labeled according to normal and defective conditions. The multi-classification model is made based on CNN and applies pre-learning models such as VGGNet, MobileNet, ResNet, etc. to compare performance and identify improvement directions with accuracy and loss graphs. Data augmentation and dropout techniques were applied to identify and improve overfitting problems as major problems. In order to evaluate the performance of the model, a performance evaluation was conducted using the confusion matrix as a performance indicator, and the performance of more than 99% was confirmed. In addition, it checks the classification results for images acquired in real time by applying them to the actual process to check whether the discrimination values are accurately derived.
Recently, according to development of artificial intelligence, a wide range of industry being automatic and optimized. Also we can find out some research of using supervised learning for deteceting defect of railway in domestic rail industry. However, there are structures other than rails on the track, and the fastener is a device that binds the rail to other structures, and periodic inspections are required to prevent safety accidents. In this paper, we present a method of reducing cost for labeling using semi-supervised and transfer model trained on rail fastener data. We use Resnet50 as the backbone network pretrained on ImageNet. At first we randomly take training data from unlabeled data and then labeled that data to train model. After predict unlabeled data by trained model, we adopted a method of adding the data with the highest probability for each class to the training data by a predetermined size. Futhermore, we also conducted some experiments to investigate the influence of the number of initially labeled data. As a result of the experiment, model reaches 92% accuracy which has a performance difference of around 5% compared to supervised learning. This is expected to improve the performance of the classifier by using relatively few labels without additional labeling processes through the proposed method.
Ki Hyun Kwon;Jong Hyeok Roh;Ah-Na Kim;Tae Hyong Kim
The Journal of Korea Institute of Information, Electronics, and Communication Technology
/
v.16
no.6
/
pp.392-399
/
2023
This paper proposes a deep learning model to determine the region and depth of cabbage cores for robotic automation of the cabbage core removal process during the kimchi manufacturing process. In addition, rather than predicting the depth of the measured cabbage, a model was presented that simultaneously detects and classifies the area by converting it into a discrete class. For deep learning model learning and verification, RGB images of the harvested cabbage 522 were obtained. The core region and depth labeling and data augmentation techniques from the acquired images was processed. MAP, IoU, acuity, sensitivity, specificity, and F1-score were selected to evaluate the performance of the proposed YOLO-v4 deep learning model-based cabbage core area detection and classification model. As a result, the mAP and IoU values were 0.97 and 0.91, respectively, and the acuity and F1-score values were 96.2% and 95.5% for depth classification, respectively. Through the results of this study, it was confirmed that the depth information of cabbage can be classified, and that it can be used in the development of a robot-automation system for the cabbage core removal process in the future.
As the seriousness of habitat destruction caused by development projects emerges, the importance of environmental impact assessment (EIA) is increasing to preserve biodiversity. In previous studies, research is being conducted to quantitatively evaluate the biodiversity impact of development factors and surrounding environmental factors on the landscape scale, but research on the factors affecting the reduction of biodiversity based on development projects is insufficient. This study examined whether independent variables (size of development project, type of the development, DEM, ecosystem and nature map, distance from the green land, distance from the protected area), which have been proven to effect biodiversity through the previous researches, have a significant effect on the change of richness index (RI) through multi-class logistic regression analysis, T-test, and analysis of the development type. As a result, only the size of development project and the first richness index in EIA showed p-value less than 0.05. And it was confirmed that the reduction in biodiversity was significantly changed in the following construction types: installation of sports facilities, energy development, and development of industrial location and industrial complex. Since the results of this study confirmed that the impact of the variables may be inconsistent depending on the analysis scale, additional study of necessary indicators at the development project is needed to analyze biodiversity changes in EIA accurately.
The Journal of Korea Institute of Information, Electronics, and Communication Technology
/
v.17
no.3
/
pp.121-129
/
2024
The rapid advancement of digital technology and the COVID-19 pandemic have significantly accelerated the growth of online commerce, highlighting the need for support mechanisms that enable small business owners to effectively respond to these market changes. In response, this paper presents a foundational technology leveraging the Online to Offline (O2O) strategy to automatically capture products displayed on retail shelves and utilize these images to create virtual stores. The essence of this research lies in precisely identifying and recognizing the location and names of displayed products, for which a single-class-targeted, lightweight model based on YOLOv8, named ESD-YOLOv8, is proposed. The detected products are identified by their names through feature-point-based technology, equipped with the capability to swiftly update the system by simply adding photos of new products. Through experiments, product name recognition demonstrated an accuracy of 74.0%, and position detection achieved a performance with an F2-Score of 92.8% using only 0.3M parameters. These results confirm that the proposed method possesses high performance and optimized efficiency.
The Journal of Korea Institute of Information, Electronics, and Communication Technology
/
v.17
no.4
/
pp.205-212
/
2024
This study developed a deep learning model that distinguishes the front (with garnish) and the back (without garnish) surface of the dried semi-finished product (dried bukak) for screening operation before transfter the dried bukak to oil heater using robot's vacuum gripper. For deep learning model training and verification, RGB images for the front and back surfaces of 400 dry bukak that treated by data preproccessing were obtained. YOLO-v5 was used as a base structure of deep learning model. The area, surface information labeling, and data augmentation techniques were applied from the acquired image. Parameters including mAP, mIoU, accumulation, recall, decision, and F1-score were selected to evaluate the performance of the developed YOLO-v5 deep learning model-based surface detection model. The mAP and mIoU on the front surface were 0.98 and 0.96, respectively, and on the back surface, they were 1.00 and 0.95, respectively. The results of binary classification for the two front and back classes were average 98.5%, recall 98.3%, decision 98.6%, and F1-score 98.4%. As a result, the developed model can classify the surface information of the dried bukak using RGB images, and it can be used to develop a robot-automated system for the surface detection process of the dried bukak before deep frying.
Proceedings of the Korea Information Processing Society Conference
/
2007.05a
/
pp.1487-1490
/
2007
디지털 위성방송의 시작과 더불어 본격적인 데이터 방송의 시대가 열렸다. 데이터방송이 시작 되면서 데이터방송용 양방향 콘텐츠에 대한 수요가 급속하게 증가하고 있다. 하지만 양방향 콘텐츠 개발에 필요한 저작 도구 및 검증 시스템은 아주 초보적인 수준에 머물러 있는 것이 현실이다. 그러나 방송의 특성상 콘텐츠 상에서의 오류는 방송 사고에까지 이를 수 있는 심각한 상황이 연출 될 수 있다. 본 연구 팀은 이러한 DTV 콘텐츠 개발 요구에 부응하여, 개발자의 콘텐츠 개발 및 사업자 또는 기관에서의 콘텐츠 검증이 원활이 이루어 질수 있도록 하는 양방향 콘텐츠 검증 시스템을 개발 중이다. 양방향 콘텐츠 검증 시스템은 Java 컴파일러, 디버거, 미들웨어, 가상머신, 그리고 IDE 등으로 구성된다. 본 논문에서 제시한 자바 컴파일러는 양방향 콘텐츠 검증 시스템에서 데이터 방송용 자바 애플리케이션(Xlet)을 컴파일하여 에뮬레이팅 하거나 런타임 상에서 디버깅이 가능하도록 하는 바이너리형태의 class 파일을 생성한다. 이를 위해 Java 컴파일러는 *.java 파일을 입력으로 받아 어휘 분석과 구문 분석 과정을 거친 후 SDT(syntax-directed translation)에 의해 AST(Abstract Syntax Tree)를 생성한다. 클래스링커는 생성된 AST를 탐색하여 동적으로 로딩 되는 파일들을 연결하여 AST를 확장한다. 의미 분석과정에서는 확장된 AST를 입력으로 받아 참조된 명칭의 사용이 타당한지 등을 검사하고 코드 생성이 용이하도록 AST를 변형하고 부가적인 정보를 삽입하여 ST(Semantic Tree)를 생성한다. 코드 생성 단계에서는 ST를 입력으로 받아 이미 정해 놓은 패턴에 맞추어 Bytecode를 출력한다.ovoids에서도 각각의 점들에 대한 선량을 측정하였다. SAS와 SSAS의 직장에 미치는 선량차이는 실제 임상에서의 관심 점들과 가장 가까운 25 mm(R2)와 30 mm(R3)거리에서 각각 8.0% 6.0%였고 SAS와 FWAS의 직장에 미치는 선량차이는 25 mm(R2) 와 30 mm(R3)거리에서 각각 25.0% 23.0%로 나타났다. SAS와 SSAS의 방광에 미치는 선량차이는 20 m(Bl)와 30 mm(B2)거리에서 각각 8.0% 3.0%였고 SAS와 FWAS의 방광에 미치는 선량차이는 20 mm(Bl)와 30 mm(B2)거리에서 각각 23.0%, 17.0%로 나타났다. SAS를 SSAS나 FWAS로 대체하였을 때 직장에 미치는 선량은 SSAS는 최대 8.0 %, FWAS는 최대 26.0 %까지 감소되고 방광에 미치는 선량은 SSAS는 최대 8.0 % FWAS는 최대 23.0%까지 감소됨을 알 수 있었고 FWAS가 SSAS 보다 차폐효과가 더 좋은 것으로 나타났으며 이 두 종류의 shielded applicator set는 부인암의 근접치료시 직장과 방광으로 가는 선량을 감소시켜 환자치료의 최적화를 이룰 수 있을 것으로 생각된다.)한 항균(抗菌) 효과(效果)를 나타내었다. 이상(以上)의 결과(結果)로 보아 선방활명음(仙方活命飮)의 항균(抗菌) 효능(效能)은 군약(君藥)인 대황(大黃)의 성분(成分) 중(中)의 하나인 stilbene 계열(系列)의 화합물(化合物)인 Rhapontigenin과 Rhaponticin의 작용(作用)에 의(依)한 것이며, 이는 한의학(韓醫學) 방제(方劑) 원리(原理)인 군신좌사(君臣佐使) 이론(理論)에서 군약(君藥)이 주증(主症)에 주(主)로 작용(作用)하는 약물(藥物)이라는 것을 밝혀주는 것이라고
Journal of the International Relations & Interdisciplinary Education
/
v.4
no.2
/
pp.1-19
/
2024
This study examined the effects of creative musical on school adaptation and self-efficacy improvement of school maladjusted adolescents. The subjects of this study were 229 students classified as suspected school maladjustment groups through Wee class counselors and students who were judged as at-risk groups as a result of the emotional behavioral evaluation test conducted by the Office of Education. The study period consisted of 100 minutes per session once a week from May 1st to October 31st, 2023, and a total of 15 sessions were held. To verify the effectiveness, a self-efficacy scale (SES) of Kim A-young (2002)'s school adaptation scale and Sherer et al. (1982) was conducted before and after the creative musical, and the results were analyzed through the corresponding t-test. As a result of the study, the subject's school adaptation (p<.05) and the sub-factors of companionship (p<.05), school class (p<.05), and school rules (p<.05) all increased and were statistically significant after the creative musical compared to before. The subject's self-efficacy (p<.01) and the sub-factors of the study, general self-efficacy (p<.01), and social self-efficacy (p<.05) also increased and were statistically significant after the creative musical compared to before it was conducted. Therefore, this study revealed that creative musicals are effective in improving school adaptation and self-efficacy of school maladjusted adolescents.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.