• Title/Summary/Keyword: 클래스도

Search Result 2,356, Processing Time 0.026 seconds

Class Classification and Validation of a Musculoskeletal Risk Factor Dataset for Manufacturing Workers (제조업 노동자 근골격계 부담요인 데이터셋 클래스 분류와 유효성 검증)

  • Young-Jin Kang;;;Jeong, Seok Chan
    • The Journal of Bigdata
    • /
    • v.8 no.1
    • /
    • pp.49-59
    • /
    • 2023
  • There are various items in the safety and health standards of the manufacturing industry, but they can be divided into work-related diseases and musculoskeletal diseases according to the standards for sickness and accident victims. Musculoskeletal diseases occur frequently in manufacturing and can lead to a decrease in labor productivity and a weakening of competitiveness in manufacturing. In this paper, to detect the musculoskeletal harmful factors of manufacturing workers, we defined the musculoskeletal load work factor analysis, harmful load working postures, and key points matching, and constructed data for Artificial Intelligence(AI) learning. To check the effectiveness of the suggested dataset, AI algorithms such as YOLO, Lite-HRNet, and EfficientNet were used to train and verify. Our experimental results the human detection accuracy is 99%, the key points matching accuracy of the detected person is @AP0.5 88%, and the accuracy of working postures evaluation by integrating the inferred matching positions is LEGS 72.2%, NECT 85.7%, TRUNK 81.9%, UPPERARM 79.8%, and LOWERARM 92.7%, and considered the necessity for research that can prevent deep learning-based musculoskeletal diseases.

Quality Visualization of Quality Metric Indicators based on Table Normalization of Static Code Building Information (정적 코드 내부 정보의 테이블 정규화를 통한 품질 메트릭 지표들의 가시화를 위한 추출 메커니즘)

  • Chansol Park;So Young Moon;R. Young Chul Kim
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.5
    • /
    • pp.199-206
    • /
    • 2023
  • The current software becomes the huge size of source codes. Therefore it is increasing the importance and necessity of static analysis for high-quality product. With static analysis of the code, it needs to identify the defect and complexity of the code. Through visualizing these problems, we make it guild for developers and stakeholders to understand these problems in the source codes. Our previous visualization research focused only on the process of storing information of the results of static analysis into the Database tables, querying the calculations for quality indicators (CK Metrics, Coupling, Number of function calls, Bad-smell), and then finally visualizing the extracted information. This approach has some limitations in that it takes a lot of time and space to analyze a code using information extracted from it through static analysis. That is since the tables are not normalized, it may occur to spend space and time when the tables(classes, functions, attributes, Etc.) are joined to extract information inside the code. To solve these problems, we propose a regularized design of the database tables, an extraction mechanism for quality metric indicators inside the code, and then a visualization with the extracted quality indicators on the code. Through this mechanism, we expect that the code visualization process will be optimized and that developers will be able to guide the modules that need refactoring. In the future, we will conduct learning of some parts of this process.

Establishment of a deep learning-based defect classification system for optimizing textile manufacturing equipment

  • YuLim Kim;Jaeil Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.10
    • /
    • pp.27-35
    • /
    • 2023
  • In this paper, we propose a process of increasing productivity by applying a deep learning-based defect detection and classification system to the prepreg fiber manufacturing process, which is in high demand in the field of producing composite materials. In order to apply it to toe prepreg manufacturing equipment that requires a solution due to the occurrence of a large amount of defects in various conditions, the optimal environment was first established by selecting cameras and lights necessary for defect detection and classification model production. In addition, data necessary for the production of multiple classification models were collected and labeled according to normal and defective conditions. The multi-classification model is made based on CNN and applies pre-learning models such as VGGNet, MobileNet, ResNet, etc. to compare performance and identify improvement directions with accuracy and loss graphs. Data augmentation and dropout techniques were applied to identify and improve overfitting problems as major problems. In order to evaluate the performance of the model, a performance evaluation was conducted using the confusion matrix as a performance indicator, and the performance of more than 99% was confirmed. In addition, it checks the classification results for images acquired in real time by applying them to the actual process to check whether the discrimination values are accurately derived.

Detection Fastener Defect using Semi Supervised Learning and Transfer Learning (준지도 학습과 전이 학습을 이용한 선로 체결 장치 결함 검출)

  • Sangmin Lee;Seokmin Han
    • Journal of Internet Computing and Services
    • /
    • v.24 no.6
    • /
    • pp.91-98
    • /
    • 2023
  • Recently, according to development of artificial intelligence, a wide range of industry being automatic and optimized. Also we can find out some research of using supervised learning for deteceting defect of railway in domestic rail industry. However, there are structures other than rails on the track, and the fastener is a device that binds the rail to other structures, and periodic inspections are required to prevent safety accidents. In this paper, we present a method of reducing cost for labeling using semi-supervised and transfer model trained on rail fastener data. We use Resnet50 as the backbone network pretrained on ImageNet. At first we randomly take training data from unlabeled data and then labeled that data to train model. After predict unlabeled data by trained model, we adopted a method of adding the data with the highest probability for each class to the training data by a predetermined size. Futhermore, we also conducted some experiments to investigate the influence of the number of initially labeled data. As a result of the experiment, model reaches 92% accuracy which has a performance difference of around 5% compared to supervised learning. This is expected to improve the performance of the classifier by using relatively few labels without additional labeling processes through the proposed method.

Development of a deep learning-based cabbage core region detection and depth classification model (딥러닝 기반 배추 심 중심 영역 및 깊이 분류 모델 개발)

  • Ki Hyun Kwon;Jong Hyeok Roh;Ah-Na Kim;Tae Hyong Kim
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.6
    • /
    • pp.392-399
    • /
    • 2023
  • This paper proposes a deep learning model to determine the region and depth of cabbage cores for robotic automation of the cabbage core removal process during the kimchi manufacturing process. In addition, rather than predicting the depth of the measured cabbage, a model was presented that simultaneously detects and classifies the area by converting it into a discrete class. For deep learning model learning and verification, RGB images of the harvested cabbage 522 were obtained. The core region and depth labeling and data augmentation techniques from the acquired images was processed. MAP, IoU, acuity, sensitivity, specificity, and F1-score were selected to evaluate the performance of the proposed YOLO-v4 deep learning model-based cabbage core area detection and classification model. As a result, the mAP and IoU values were 0.97 and 0.91, respectively, and the acuity and F1-score values were 96.2% and 95.5% for depth classification, respectively. Through the results of this study, it was confirmed that the depth information of cabbage can be classified, and that it can be used in the development of a robot-automation system for the cabbage core removal process in the future.

Study on the Factors Affecting the Richness Index of Bird Species in Environmental Impact Assessment (환경영향평가에서 조류 종풍부도 변화에 미치는 요인 고찰 연구)

  • Hyunbin Moon;Eunsub Kim;Dongkun Lee
    • Journal of Environmental Impact Assessment
    • /
    • v.33 no.2
    • /
    • pp.64-73
    • /
    • 2024
  • As the seriousness of habitat destruction caused by development projects emerges, the importance of environmental impact assessment (EIA) is increasing to preserve biodiversity. In previous studies, research is being conducted to quantitatively evaluate the biodiversity impact of development factors and surrounding environmental factors on the landscape scale, but research on the factors affecting the reduction of biodiversity based on development projects is insufficient. This study examined whether independent variables (size of development project, type of the development, DEM, ecosystem and nature map, distance from the green land, distance from the protected area), which have been proven to effect biodiversity through the previous researches, have a significant effect on the change of richness index (RI) through multi-class logistic regression analysis, T-test, and analysis of the development type. As a result, only the size of development project and the first richness index in EIA showed p-value less than 0.05. And it was confirmed that the reduction in biodiversity was significantly changed in the following construction types: installation of sports facilities, energy development, and development of industrial location and industrial complex. Since the results of this study confirmed that the impact of the variables may be inconsistent depending on the analysis scale, additional study of necessary indicators at the development project is needed to analyze biodiversity changes in EIA accurately.

Automation of Online to Offline Stores: Extremely Small Depth-Yolov8 and Feature-Based Product Recognition (Online to Offline 상점의 자동화 : 초소형 깊이의 Yolov8과 특징점 기반의 상품 인식)

  • Jongwook Si;Daemin Kim;Sungyoung Kim
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.17 no.3
    • /
    • pp.121-129
    • /
    • 2024
  • The rapid advancement of digital technology and the COVID-19 pandemic have significantly accelerated the growth of online commerce, highlighting the need for support mechanisms that enable small business owners to effectively respond to these market changes. In response, this paper presents a foundational technology leveraging the Online to Offline (O2O) strategy to automatically capture products displayed on retail shelves and utilize these images to create virtual stores. The essence of this research lies in precisely identifying and recognizing the location and names of displayed products, for which a single-class-targeted, lightweight model based on YOLOv8, named ESD-YOLOv8, is proposed. The detected products are identified by their names through feature-point-based technology, equipped with the capability to swiftly update the system by simply adding photos of new products. Through experiments, product name recognition demonstrated an accuracy of 74.0%, and position detection achieved a performance with an F2-Score of 92.8% using only 0.3M parameters. These results confirm that the proposed method possesses high performance and optimized efficiency.

Development of surface detection model for dried semi-finished product of Kimbukak using deep learning (딥러닝 기반 김부각 건조 반제품 표면 검출 모델 개발)

  • Tae Hyong Kim;Ki Hyun Kwon;Ah-Na Kim
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.17 no.4
    • /
    • pp.205-212
    • /
    • 2024
  • This study developed a deep learning model that distinguishes the front (with garnish) and the back (without garnish) surface of the dried semi-finished product (dried bukak) for screening operation before transfter the dried bukak to oil heater using robot's vacuum gripper. For deep learning model training and verification, RGB images for the front and back surfaces of 400 dry bukak that treated by data preproccessing were obtained. YOLO-v5 was used as a base structure of deep learning model. The area, surface information labeling, and data augmentation techniques were applied from the acquired image. Parameters including mAP, mIoU, accumulation, recall, decision, and F1-score were selected to evaluate the performance of the developed YOLO-v5 deep learning model-based surface detection model. The mAP and mIoU on the front surface were 0.98 and 0.96, respectively, and on the back surface, they were 1.00 and 0.95, respectively. The results of binary classification for the two front and back classes were average 98.5%, recall 98.3%, decision 98.6%, and F1-score 98.4%. As a result, the developed model can classify the surface information of the dried bukak using RGB images, and it can be used to develop a robot-automated system for the surface detection process of the dried bukak before deep frying.

Development of a Java Compiler for Verification System of DTV Contents (DTV 콘텐츠 검증 시스템을 위한 Java 컴파일러의 개발)

  • Son, Min-Sung;Park, Jin-Ki;Lee, Yang-Sun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2007.05a
    • /
    • pp.1487-1490
    • /
    • 2007
  • 디지털 위성방송의 시작과 더불어 본격적인 데이터 방송의 시대가 열렸다. 데이터방송이 시작 되면서 데이터방송용 양방향 콘텐츠에 대한 수요가 급속하게 증가하고 있다. 하지만 양방향 콘텐츠 개발에 필요한 저작 도구 및 검증 시스템은 아주 초보적인 수준에 머물러 있는 것이 현실이다. 그러나 방송의 특성상 콘텐츠 상에서의 오류는 방송 사고에까지 이를 수 있는 심각한 상황이 연출 될 수 있다. 본 연구 팀은 이러한 DTV 콘텐츠 개발 요구에 부응하여, 개발자의 콘텐츠 개발 및 사업자 또는 기관에서의 콘텐츠 검증이 원활이 이루어 질수 있도록 하는 양방향 콘텐츠 검증 시스템을 개발 중이다. 양방향 콘텐츠 검증 시스템은 Java 컴파일러, 디버거, 미들웨어, 가상머신, 그리고 IDE 등으로 구성된다. 본 논문에서 제시한 자바 컴파일러는 양방향 콘텐츠 검증 시스템에서 데이터 방송용 자바 애플리케이션(Xlet)을 컴파일하여 에뮬레이팅 하거나 런타임 상에서 디버깅이 가능하도록 하는 바이너리형태의 class 파일을 생성한다. 이를 위해 Java 컴파일러는 *.java 파일을 입력으로 받아 어휘 분석과 구문 분석 과정을 거친 후 SDT(syntax-directed translation)에 의해 AST(Abstract Syntax Tree)를 생성한다. 클래스링커는 생성된 AST를 탐색하여 동적으로 로딩 되는 파일들을 연결하여 AST를 확장한다. 의미 분석과정에서는 확장된 AST를 입력으로 받아 참조된 명칭의 사용이 타당한지 등을 검사하고 코드 생성이 용이하도록 AST를 변형하고 부가적인 정보를 삽입하여 ST(Semantic Tree)를 생성한다. 코드 생성 단계에서는 ST를 입력으로 받아 이미 정해 놓은 패턴에 맞추어 Bytecode를 출력한다.ovoids에서도 각각의 점들에 대한 선량을 측정하였다. SAS와 SSAS의 직장에 미치는 선량차이는 실제 임상에서의 관심 점들과 가장 가까운 25 mm(R2)와 30 mm(R3)거리에서 각각 8.0% 6.0%였고 SAS와 FWAS의 직장에 미치는 선량차이는 25 mm(R2) 와 30 mm(R3)거리에서 각각 25.0% 23.0%로 나타났다. SAS와 SSAS의 방광에 미치는 선량차이는 20 m(Bl)와 30 mm(B2)거리에서 각각 8.0% 3.0%였고 SAS와 FWAS의 방광에 미치는 선량차이는 20 mm(Bl)와 30 mm(B2)거리에서 각각 23.0%, 17.0%로 나타났다. SAS를 SSAS나 FWAS로 대체하였을 때 직장에 미치는 선량은 SSAS는 최대 8.0 %, FWAS는 최대 26.0 %까지 감소되고 방광에 미치는 선량은 SSAS는 최대 8.0 % FWAS는 최대 23.0%까지 감소됨을 알 수 있었고 FWAS가 SSAS 보다 차폐효과가 더 좋은 것으로 나타났으며 이 두 종류의 shielded applicator set는 부인암의 근접치료시 직장과 방광으로 가는 선량을 감소시켜 환자치료의 최적화를 이룰 수 있을 것으로 생각된다.)한 항균(抗菌) 효과(效果)를 나타내었다. 이상(以上)의 결과(結果)로 보아 선방활명음(仙方活命飮)의 항균(抗菌) 효능(效能)은 군약(君藥)인 대황(大黃)의 성분(成分) 중(中)의 하나인 stilbene 계열(系列)의 화합물(化合物)인 Rhapontigenin과 Rhaponticin의 작용(作用)에 의(依)한 것이며, 이는 한의학(韓醫學) 방제(方劑) 원리(原理)인 군신좌사(君臣佐使) 이론(理論)에서 군약(君藥)이 주증(主症)에 주(主)로 작용(作用)하는 약물(藥物)이라는 것을 밝혀주는 것이라고

The Effect of Creative Musical on School Adaptation and Self-efficacy of School Maladjusted Adolescents (창작음악극이 학교부적응 청소년의 학교적응 및 자기효능감에 미치는 효과)

  • Kim, Hyun Jung
    • Journal of the International Relations & Interdisciplinary Education
    • /
    • v.4 no.2
    • /
    • pp.1-19
    • /
    • 2024
  • This study examined the effects of creative musical on school adaptation and self-efficacy improvement of school maladjusted adolescents. The subjects of this study were 229 students classified as suspected school maladjustment groups through Wee class counselors and students who were judged as at-risk groups as a result of the emotional behavioral evaluation test conducted by the Office of Education. The study period consisted of 100 minutes per session once a week from May 1st to October 31st, 2023, and a total of 15 sessions were held. To verify the effectiveness, a self-efficacy scale (SES) of Kim A-young (2002)'s school adaptation scale and Sherer et al. (1982) was conducted before and after the creative musical, and the results were analyzed through the corresponding t-test. As a result of the study, the subject's school adaptation (p<.05) and the sub-factors of companionship (p<.05), school class (p<.05), and school rules (p<.05) all increased and were statistically significant after the creative musical compared to before. The subject's self-efficacy (p<.01) and the sub-factors of the study, general self-efficacy (p<.01), and social self-efficacy (p<.05) also increased and were statistically significant after the creative musical compared to before it was conducted. Therefore, this study revealed that creative musicals are effective in improving school adaptation and self-efficacy of school maladjusted adolescents.