객체 지향 시스템에서 클래스 추가 및 삭제로 인하여 클래스간의 새로운 관계를 유지할 수 있는 클래스 계층 구조의 변경이 필요하다. 그러나 기존의 방법에서는 클래스 계층 구조 변경시 부모 클래스와 자식 클래스 사이의 의미를 파악하기 어려워 많은 추가적인 분석 비용이 소요된다. 본 논문에서는 클래스간의 유사성을 측정하여 새로운 관계성 분류 방법을 통해 의미적 변화에 따른 수정 방법을 제시한다. 즉, 이 방법은 클래스들의 유사성을 측정하여 관계성을 기준 하여 무관 관계, 동일 관계, 포함 관계, 부분 집합 관계로 구분하여 클래스 계층 구조를 재구성한다. 본 논문에서 제시하는 방법은 클래스 계층 구조 변경시 클래스간의 의미 오류 가능성을 최소화 할 수 있도록 한다. 또한 다양한 그래픽 및 텍스트 처리를 통하여 사용자에게 재사용의 편리성 및 이해성을 높일 수 있도록 하였다.
최근의 객체지향 소프트웨어개발에서는 설계 및 유지보수와 관련된 많은 문제점들을 해결하기 위하여 클래스를 재설계하거나 클래스계층구조를 재구성하는 등 객체지향 소프트웨어에 대한 일련의 재이용 및 재구성기법이 사용되고 있다. 본 논문에서는 클래스계층구조의 재구성에 관한 정형적인 이론을 제공함으로써 클래스계층구조의 재구성에 관하여 보다 수월하게 이해하고 적용할 수 있도록 하였다. 구체적으로 본 논문에서는 객체지향 소프트웨어의 개발에 있어서 주요 골격이 되는 클래스계층구조를 평탄화시킨 형태로 정의한 평탄화된 클래스계층구조를 소개하고, 임의의 클래스계층구조를 평탄화된 형태로 변형시키기 위한 알고리즘을 제안하였다. 클래스계층구조를 평탄화함으로써 클래스계층구조상의 계승 및 집약관계가 각 인스턴스들에게 어떻게 사상되는가를 수월하게 파악할 수 있으며, 주어진 클래스계층구조로부터 생성가능한 객체를 그대로 유지보존할 수 있는 평탄화된 형태의 새로운 클래스계층구조를 구축할 수 있다. 평탄화된 클래스계층구조는 클래스계층구조를 재구성하여 객체지향 소프트웨어를 점증적으로 변화 발전시키거나 재이용함에 있어서 기초를 제공하는 등 중요한 역할을 수행한다.
Support vector machine(SVM)은 입력 데이터를 두개의 다른 클래스로 구별하는 결정면을 학습과정을 통하여 구한다. 기존의 SVM은 단지 이차 클래스에 대하여 적용되어지나, 많은 응용분야에서 입력 데이터들은 몇 개의 다중 클래스로 분류해야 한다. 다중 클래스 분류 문제는 기존의 SVM을 사용할 수 있는 일반적으로 몇 개의 2차 문제로 분해하여 풀 수 있다. 실례로 one-against-all 방법을 적용하면, n 클래스 문제는 n 개의 두 클래스 문제로 변환 하여 풀 수 있다. 본 논문에서는 입력 패턴들을 다중 클래스로 분류 할 때 퍼지 소속도를 응용한 소프트 마진 알고리즘의 상한 경계값을 각 클래스에 따라 다르게 적용함으로써 기존의 SVM 보다 더 우수한 학습 능력을 가짐을 보였다.
본 논문에서는 대량의 말뭉치를 바탕으로 한국어에 대해 단어 기반의 n-gram 언어 모델과 클래스 기반의 언어 모델을 구축하고, 이를 실험적으로 검증한다. 단어 기반의 n-gram 모델링의 경우 Katz의 백오프와 Kneser-ney의 스무딩(smoothing) 알고리즘에 대해 실험을 수행한다. 클래스 기반의 언어 모델의 경우에는 품사 태그를 단어의 클래스로 사용한 경우와 말뭉치로부터 자동으로 구축된 클래스를 사용한 경우로 나누어 실험한다. 마지막으로 단어 기반 모델과 클래스 기반 모델을 결합하여 각각의 모델과 그 성능을 비교한다. 실험 결과 단어 기반의 언어 모델의 경우 Katz의 백오프에 비해 Knerser-ney의 스무딩이 보다 조은 성능을 나타내었다. 클래스 기반의 모델의 경우 품사 기반의 방범보다 자동 구축된 단어 클래스를 이용하는 방법의 성능이 더 좋았다. 또한, 단어 모델과 클래스 모델을 결합한 모델이 가장 좋은 성능을 나타냈다. 논문의 모든 알고리즘은 직접 구현되었으며 KLM Toolkit이란 이름으로 제공된다.
본 논문에서는 임베디드 자바 시스템을 위한 핵심 클래스 파일에서 상수풀 (constant pool) 의 각 항목들에 대해 통계를 내고 분석해 보았다. 분석 대상 클래스 파일들은 썬 마이크로 시스템사의 J2ME/CLDC 클래스 파일들과, RTJ Computing 사의 simpleRTJ 시스템의 클래스 파일들이다. 이들 파일들에 대한 분석 결과 임베디드 자바 시스템을 위한 핵심 클래스 파일에서 상수풀은 전체 파일 크기의 거의 절반에 해당되는 46%를 차지하고 있음을 알 수 있었다. 또한 상수풀에는 평균 44개의 상수들이 있으며, 이들 중 실제 바이트코드 실행에 사용되는 상수들은 단지 6퍼센트에 불과한 3개에 지나지 않았다. 나머지 78퍼센트의 상수들은 단지 형식 확인과 클래스 링크 목적으로만 사용되는 것들이었다. 이 결과는 실행 시간시 동적인 형식 확인과 클래스 렁크를 하지 않는 환경이라면 매우 큰 메모리 절감을 이룰 수 있음을 보여주고 있는 것이다. 본 연구의 결과는 클래스 파일이 ROM 등에 탑재되어 있는 임베디드 시스템 환경에 적용될 수 있다.
자바는 서로 다른 종류의 컴퓨터 시스템에서 동일하게 동작하는 플랫폼 독립적인 특성을 가지고 있다. 자바가 상기계(JVM)는 클래스 파일을 읽어 들여 인터프리팅하여 실행한다. 보조기억장치가 없는 내장형 시스템에서는 메모리에 클래스 파일이 위치하는데 클래스 파일에는 디버깅등의 목적으로 사용하는 정보와 클래스, 상수, 필드, 메소드 둥의 정보들을 포함하고 있기 때문에 내장형 시스템에서 사용하기에 적합하지 않다. 본 논문에서는 클래스 파일을 변환하여 내장형 시스템에서 시스템의 효율적인 자원 사용과 성능을 향상시킬 수 있도록 클래스 파일을 변환 해주는 도구인 cls2bin을 설계 및 구현하였다. c1s2bin은 클래스 파일에서 동작에 필요하지 않은 정보들을 제거하고 인터프리팅 될 수 있는 새로운 이미지(bin) 파일을 생성한다 cls2bin의 동작과정과 bin 파일 포맷을 살펴봄으로서 내장형 시스템에서 효율적인 자원사용과 내부정보의 접근 방법을 고찰하였으며 그 결과로 내장형 자바 시스템에서의 개선된 클래스 파일의 형태를 정의하고자 한다.
본 논문에서는 클래스들간의 종속관계를 효율적으로 표현하기 위한 모듈클래스 종속그래프를 제안한다. 객체 지향언어는 설계시 독립적으로 개발되어지고, 클래스들간의 관계를 형성하여 구성되어진다. 따라서 이러한 독립적인 특성을 고려하고, 클래스 계층구조에 존재하는 클래스들간의 관계를 효율적으로 표현할 필요가 존재한다. 본 논문에서는 어플리케이션에 종속적인 기존의 시스템 종속그래프와 단위 클래스를 표현하는 클래스 종속그래프에서 제시되지 않고 있는 클래스들간의 관계를 표현하기 위해 객체지향시스템의 설계단위인 모듈의 개념을 이용하여 모듈클래스들 종속그래프를 제시하고, 객체지향의 특징인 객체의 생성자, 상속관계 및 동적 바인딩 효과를 적용시켜 효율성의 검증과 이를 절차간 슬라이싱에 적용시켜 슬라이싱의 관계를 고찰한다. 또한 모듈 클래스에 존재하는 클래스의 멤버데이터들간의 구별을 가능하게 하기 위한 파라메터의 표현법을 제시한다. 이러한 모듈클래스 종속 그래프를 통해 시스템 설계시 모듈 클래스간의 관계를 보다 정확하게 분석할 수 있고, 시스템 분석에 필요한 역공학, 테스팅, 시각화와 같은 다른 응용에 폭넓게 적용될 수 있다.
본 논문에서 소개하고 있는 자바 클래스 파일 브라우저는 자바 컴파일러에 의해 컴파일된 결과인 클래스 파일의 정보를 시각적으로 보여줌으로써 자바 클래스 파일의 상세한 분석과 자바 소스코드가 보여주지 못하는 클래스 파일내의 정보를 통해 자바 소스 프로그램에 대해 보다 명확하고 쉬운 이해가 가능하도록 한다.
본 논문에서는 차세대 이동통신 수송망에서 트래픽 클래스별 서비스 품질 요구 사항을 고려한 효율적인 대역폭 재할당 기법을 제안한다. 제안 기법은 유선망 트래픽 클래스를 실시간 클래스와 비시실시간 클래스로 구분하여 무선망 계층에서 정의된 서비스 품질 클래스를 유선망 트래픽 클래스로 매핑시킨 후 실시간 트래픽 클래스가 비실시간 트래픽 클래스의 유휴 자원을 동적으로 사용하도록 한다. 제안 기법은 운영자가 지정한 패킷 손실율과 Auto-Regressive(AR) 시계열 모델을 이용하여 주기적으로 비실시간 트래픽 클래스의 향후 필요 대역폭을 예측하며 유휴 대역폭이 발생하는 경우에만 이를 실시간 트래픽 클래스에 동적으로 할당함으로써 비실시간 트래픽 클래스의 패킷 손실율을 보장함과 동시에 시스템의 대역폭 이용율을 향상시킨다. 본 논문에서는 실제 측정된 인터넷 트래픽을 비실시간 트래픽 클래스로 이용하여 제안 기법은 링크 대역폭의 효율을 증가시켜 실시간 트래픽의 수용량을 증가시킴과 동시에 모든 시 구간에서 비실시간 트래픽 클래스에 원하는 패킷 손실율을 보장할 수 있음을 검증하였다.
FAQ(Frequently Asked Questions) 질의 응답 시스템은 자주 묻는 질문과 답변을 정의하고, 사용자 질의에 대해 정의된 답변 중 가장 알맞는 답변을 추론하여 제공하는 시스템이다. 정의된 대표 질문 및 대응하는 답변을 클래스(Class)라고 했을 때, FAQ 질의 응답 시스템은 분류(Classification) 문제라고 할 수 있다. 종래의 FAQ 분류는 동일 클래스 내 동의 문장(Paraphrase)에서 나타나는 공통적인 특징을 통해 분류 문제를 학습하였으나, 이는 비슷한 단어 구성을 가지면서 한 두 개의 단어에 의해 의미가 다른 문장의 차이를 구분하지 못하며, 특히 서로 다른 클래스에 속한 학습 데이터 간에 비슷한 의미를 가지는 문장이 존재할 때 클래스 분류에 오류가 발생하기 쉬운 문제점을 가지고 있다. 본 논문에서는 이 문제점을 해결하고자 서로 다른 클래스 내의 학습 데이터 문장들이 상이한 클래스임을 구분할 수 있도록 클래스 일치 여부(Class coincidence classification) 문제를 결합 학습(Jointly learning)하는 기법을 제안한다. 동일 클래스 내 학습 문장의 무작위 쌍(Pair)을 생성 및 학습하여 해당 쌍이 같은 클래스에 속한다는 것을 학습하게 하면서, 동시에 서로 다른 클래스 간 학습 문장의 무작위 쌍을 생성 및 학습하여 해당 쌍은 상이한 클래스임을 구분해 내는 능력을 함께 학습하도록 유도하였다. 실험을 위해서는 최근 발표되어 자연어 처리 분야에서 가장 좋은 성능을 보이고 있는 BERT 의 텍스트 분류 모델을 이용했으며, 제안한 기법을 적용한 모델과의 성능 비교를 위해 한국어 FAQ 데이터를 기반으로 실험을 진행했다. 실험 결과, 분류 문제만 단독으로 학습한 BERT 기본 모델보다 본 연구에서 제안한 클래스 일치 여부 결합 학습 모델이 유사한 문장들 간의 차이를 구분하며 유의미한 성능 향상을 보인다는 것을 확인할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.