• Title/Summary/Keyword: 클라우드-컴퓨팅

Search Result 1,403, Processing Time 0.027 seconds

Assessing the Relationship Between Core Technologies of the Fourth Industrial Revolution and Company Sales (4차 산업혁명 핵심기술과 기업의 매출액 간 상관관계 평가)

  • Hanmin Gu;Uihyun Hwang;Kabsung Kim
    • Industry Promotion Research
    • /
    • v.8 no.2
    • /
    • pp.1-9
    • /
    • 2023
  • To bridge the research gap in the area of the Fourth Industrial Revolution, we explore the correlation between the core technologies of the Fourth Industrial Revolution and the economic performance of companies. The results show that the technologies have a statistically significant positive (+) correlation with company sales. The size of the correlation is highest for 3D printing (139%), followed by big data (129%), cloud computing (127%), artificial intelligence (78%), and the internet of things (70%). We also found a statistically significant negative (-) interaction effect between the internet of things and 3D printing, cloud computing and big data, and cloud computing and 3D printing when examining the interaction effect of introducing core technologies of the Fourth Industrial Revolution on company sales. This paper represents an early attempt to examine the correlation between the core technologies of the Fourth Industrial Revolution and the economic performance of companies and may serve as a basis for further empirical research.

A Study on PIMS Controls for PII Outsourcing Management under the Cloud Service Environment (클라우드 서비스 환경의 개인정보 위탁을 위한 개인정보보호 관리체계 통제 연구)

  • Park, Dae-Ha;Han, Keun-Hee
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.23 no.6
    • /
    • pp.1267-1276
    • /
    • 2013
  • Cloud consumers who use cloud computing services are obliged to review and monitor the legal compliance of cloud providers who are consigned the processes of the PII (personally identifiable information) from them. This paper presented possible scenarios for cloud PII outsourcing and suggested PIMS (personal information management system) controls for outsourcing management between cloud consumers and cloud providers by analyzing both international standards and domestic certification schemes related to cloud computing and/or privacy management based on the legal obligations for PII outsourcing from Korean "Personal Information Protection Act (PIPA)". The controls suggested can be applicable for developing the guidance of complying with privacy laws in organizations or the checklist of PII outsourcing management in PIMS certification.

Delayed offloading scheme for IoT tasks considering opportunistic fog computing environment (기회적 포그 컴퓨팅 환경을 고려한 IoT 테스크의 지연된 오프로딩 제공 방안)

  • Kyung, Yeunwoong
    • Journal of Internet of Things and Convergence
    • /
    • v.6 no.4
    • /
    • pp.89-92
    • /
    • 2020
  • According to the various IoT(Internet of Things) services, there have been lots of task offloading researches for IoT devices. Since there are service response delay and core network load issues in conventional cloud computing based offloadings, fog computing based offloading has been focused whose location is close to the IoT devices. However, even in the fog computing architecture, the load can be concentrated on the for computing node when the number of requests increase. To solve this problem, the opportunistic fog computing concept which offloads task to available computing resources such as cars and drones is introduced. In previous fog and opportunistic fog node researches, the offloading is performed immediately whenever the service request occurs. This means that the service requests can be offloaded to the opportunistic fog nodes only while they are available. However, if the service response delay requirement is satisfied, there is no need to offload the request immediately. In addition, the load can be distributed by making the best use of the opportunistic fog nodes. Therefore, this paper proposes a delayed offloading scheme to satisfy the response delay requirements and offload the request to the opportunistic fog nodes as efficiently as possible.

Analyzing Trends of Commoditized Confidential Computing Frameworks for Implementing Trusted Execution Environment Applications (신뢰 실행 환경 어플리케이션 개발을 위한 상용 컨피덴셜 컴퓨팅 프레임워크 동향 및 비교 분석)

  • Kim, Seongmin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.4
    • /
    • pp.545-558
    • /
    • 2021
  • Recently, Confidential computing plays an important role in next-generation cloud technology along with the development of trusted execution environments(TEEs), as it guarantees the trustworthiness of applications despite of untrusted nature of the cloud. Both academia and industry have actively proposed commercialized confidential computing solutions based on Intel SGX technology. However, the lack of clear criteria makes developers difficult to select a proper confidential computing framework among the possible options when implementing TEE-based cloud applications. In this paper, we derive baseline metrics that help to clarify the pros and cons of each framework through in-depth comparative analysis against existing confidential computing frameworks. Based on the comparison, we propose criteria to application developers for effectively selecting an appropriate confidential computing framework according to the design purpose of TEE-based applications.

A Performance Evaluation of the e-Gov Standard Framework on PaaS Cloud Computing Environment: A Geo-based Image Processing Case (PaaS 클라우드 컴퓨팅 환경에서 전자정부 표준프레임워크 성능평가: 공간영상 정보처리 사례)

  • KIM, Kwang-Seob;LEE, Ki-Won
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.4
    • /
    • pp.1-13
    • /
    • 2018
  • Both Platform as a Service (PaaS) as one of the cloud computing service models and the e-government (e-Gov) standard framework from the Ministry of the Interior and Safety (MOIS) provide developers with practical computing environments to build their applications in every web-based services. Web application developers in the geo-spatial information field can utilize and deploy many middleware software or common functions provided by either the cloud-based service or the e-Gov standard framework. However, there are few studies for their applicability and performance in the field of actual geo-spatial information application yet. Therefore, the motivation of this study was to investigate the relevance of these technologies or platform. The applicability of these computing environments and the performance evaluation were performed after a test application deployment of the spatial image processing case service using Web Processing Service (WPS) 2.0 on the e-Gov standard framework. This system was a test service supported by a cloud environment of Cloud Foundry, one of open source PaaS cloud platforms. Using these components, the performance of the test system in two cases of 300 and 500 threads was assessed through a comparison test with two kinds of service: a service case for only the PaaS and that on the e-Gov on the PaaS. The performance measurements were based on the recording of response time with respect to users' requests during 3,600 seconds. According to the experimental results, all the test cases of the e-Gov on PaaS considered showed a greater performance. It is expected that the e-Gov standard framework on the PaaS cloud would be important factors to build the web-based spatial information service, especially in public sectors.

A Study of the Establishment of BIM Design Environment based on Virtual Desktop Infrastructure(VDI) of Cloud Computing Technology (클라우드 컴퓨팅 기술을 활용한 데스크탑 가상화 기반의 BIM 설계 환경 구축에 관한 연구)

  • Shin, Joonghwan;Lee, Kyuhyup;Kwon, Soonwook;Choi, Gyuseong;Ko, Hyunglyu
    • Korean Journal of Construction Engineering and Management
    • /
    • v.16 no.4
    • /
    • pp.118-128
    • /
    • 2015
  • Recently BIM technology has been expanded for using in construction project. Due to the high-cost of BIM infrastructure development, lack of regulations, lack of process and so forth, usage of BIM has been delayed than initial expectations. In design phase, especially, collaboration based on BIM system has been a key factor for successful next generation building project. Through the analysis of current research trends about IT technologies, virtualization and BIM service, data exchange such as drawings, 3D model, object data, properties using cloud computing and virtual server system is defined as a most successful solution. The purpose of this study is to enable the cloud computing BIM server to provide several main functions such as editing models, 3D model viewing and checking, mark-up and snapshot in high-performance quality by proper design of VDI system. Concurrent client connection performance is a main technical index of VDI. Through testing of test-bed server client, developed VDI system's multi-connect control is evaluated. Performance-test result of BIM server VDI effect to development direction of cloud computing BIM service for commercialization.

Performance Testing of Satellite Image Processing based on OGC WPS 2.0 in the OpenStack Cloud Environment (오픈스택 클라우드 환경 OGC WPS 2.0 기반 위성영상처리 성능측정 시험)

  • Yoon, Gooseon;Kim, Kwangseob;Lee, Kiwon
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.6
    • /
    • pp.617-627
    • /
    • 2016
  • Many kinds of OGC-based web standards have been utilized in the lots of geo-spatial application fields for sharing and interoperable processing of large volume of data sets containing satellite images. As well, the number of cloud-based application services by on-demand processing of virtual machines is increasing. However, remote sensing applications using these two huge trends are globally on the initial stage. This study presents a practical linkage case with both aspects of OGC-based standard and cloud computing. Performance test is performed with the implementation result for cloud detection processing. Test objects are WPS 2.0 and two types of geo-based service environment such as web server in a single core and multiple virtual servers implemented on OpenStack cloud computing environment. Performance test unit by JMeter is five requests of GetCapabilities, DescribeProcess, Execute, GetStatus, GetResult in WPS 2.0. As the results, the performance measurement time in a cloud-based environment is faster than that of single server. It is expected that expansion of processing algorithms by WPS 2.0 and virtual processing is possible to target-oriented applications in the practical level.

Data processing techniques applying data mining based on enterprise cloud computing (데이터 마이닝을 적용한 기업형 클라우드 컴퓨팅 기반 데이터 처리 기법)

  • Kang, In-Seong;Kim, Tae-Ho;Lee, Hong-Chul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.8
    • /
    • pp.1-10
    • /
    • 2011
  • Recently, cloud computing which has provided enabling convenience that users can connect from anywhere and user friendly environment that offers on-demand network access to a shared pool of configurable computing resources such as smart-phones, net-books and PDA etc, is to be watched as a service that leads the digital revolution. Now, when business practices between departments being integrated through a cooperating system such as cloud computing, data streaming between departments is getting enormous and then it is inevitably necessary to find the solution that person in charge and find data they need. In previous studies the clustering simplifies the search process, but in this paper, it applies Hash Function to remove the de-duplicates in large amount of data in business firms. Also, it applies Bayesian Network of data mining for classifying the respect data and presents handling cloud computing based data. This system features improved search performance as well as the results Compared with conventional methods and CPU, Network Bandwidth Usage in such an efficient system performance is achieved.

Methods for Stabilizing QoS in Mobile Cloud Computing (모바일 클라우드 컴퓨팅을 위한 QoS 안정화 기법)

  • La, Hyun Jung;Kim, Soo Dong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.8
    • /
    • pp.507-516
    • /
    • 2013
  • Mobile devices have limited computing power and resources. Since mobile devices are equipped with rich network connectivity, an approach to subscribe cloud services can effectively remedy the problem, which is called Mobile Cloud Computing (MCC). Most works on MCC depend on a method to offload functional components at runtime. However, these works only consider the limited verion of offloading to a pre-defined, designated node. Moveover, there is the limitation of managing services subscribed by applications. To provide a comprehensive and practical solution for MCC, in this paper, we propose a self-stabilizing process and its management-related methods. The proposed process is based on an autonomic computing paradigm and works with diverse quality remedy actions such as migration or replicating services. And, we devise a pratical offloading mechanism which is still in an initial stage of the study. The proposed offloading mechanism is based on our proposed MCC meta-model. By adopting the self-stabilization process for MCC, many of the technical issues are effectively resolved, and mobile cloud environments can maintain consistent levels of quality in autonomous manner.

Impact Assessment of Climate Change by Using Cloud Computing (클라우드 컴퓨팅을 이용한 기후변화 영향평가)

  • Kim, Kwang-S.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.13 no.2
    • /
    • pp.101-108
    • /
    • 2011
  • Climate change could have a pronounced impact on natural and agricultural ecosystems. To assess the impact of climate change, projected climate data have been used as inputs to models. Because such studies are conducted occasionally, it would be useful to employ Cloud computing, which provides multiple instances of operating systems in a virtual environment to do processing on demand without building or maintaining physical computing resources. Furthermore, it would be advantageous to use open source geospatial applications in order to avoid the limitations of proprietary software when Cloud computing is used. As a pilot study, Amazon Web Service ? Elastic Compute Cloud (EC2) was used to calculate the number of days with rain in a given month. Daily sets of climate projection data, which were about 70 gigabytes in total, were processed using virtual machines with a customized database transaction application. The application was linked against open source libraries for the climate data and database access. In this approach, it took about 32 hours to process 17 billion rows of record in order to calculate the rain day on a global scale over the next 100 years using ten clients and one server instances. Here I demonstrate that Cloud computing could provide the high level of performance for impact assessment studies of climate change that require considerable amount of data.