• Title/Summary/Keyword: 클라우드-컴퓨팅

Search Result 1,403, Processing Time 0.035 seconds

A Study on the Security Enhancement for Personal Healthcare Information of CloudHIS (CloudHIS의 개인 의료정보를 위한 보안강화에 관한 연구)

  • Cho, Young-Sung;Chung, Ji-Moon;Na, Won-Shik
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.9
    • /
    • pp.27-32
    • /
    • 2019
  • Along with the growth of u-Healthcare, we propose a security enhancement based on network separation for CloudHIS with for handling healthcare information to cope with cyber attack. To protect against all security threats and to establish clear data security policies, we apply desktop computing servers to cloud computing services for CloudHIS. Use two PCs with a hypervisor architecture to apply physical network isolation and select the network using KVM switched controller. The other is a logical network separation using one PC with two OSs, but the network is divided through virtualization. Physical network separation is the physical connection of a PC to each network to block the access path from both the Internet and the business network. The proposed system is an independent desktop used to access an intranet or the Internet through server virtualization technology on a user's physical desktop computer. We can implement an adaptive solution to prevent hacking by configuring the CloudHIS, a cloud system that handles medical hospital information, through network separation for handling security enhancement.

Management Techniques of Interest Area Utilizing Subregions in MMORPG based on Cloud and P2P Architecture (클라우드와 P2P 구조 기반의 MMORPG에서 소영역을 활용하는 관심 구역의 관리 기법)

  • Jin-Hwan Kim
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.3
    • /
    • pp.99-106
    • /
    • 2023
  • In this paper, we propose subregion-based area of interest management techniques for MMORPG(massively multiplayer online role playing games) integrating P2P(peer-to-peer) networking and cloud computing. For the crowded region, the proposed techniques partition it into several subregions and assign a player to manage each subregion as a coordinator. These techniques include a load balancing mechanism which regulates communication and computation overhead of such player below the specified threshold. We also provide a mechanism for satisfying the criterion, where subregions overlapped with each player's view must be switched quickly and seamlessly as the view moves around in the game world. In the proposed techniques where an efficient provisioning of resources is realized, they relieve a lot of computational power and network traffic, the load on the servers in the cloud by exploiting the capacity of the players effectively. Simulation results show that the MMORPG based on cloud and P2P architecture can reduce the considerable bandwidth at the server compared to the client server architecture as the available resources grow with the number of players in crowding or hotspots.

A Novel Reference Model for Cloud Manufacturing CPS Platform Based on oneM2M Standard (제조 클라우드 CPS를 위한 oneM2M 기반의 플랫폼 참조 모델)

  • Yun, Seongjin;Kim, Hanjin;Shin, Hyeonyeop;Chin, Hoe Seung;Kim, Won-Tae
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.8 no.2
    • /
    • pp.41-56
    • /
    • 2019
  • Cloud manufacturing is a new concept of manufacturing process that works like a single factory with connected multiple factories. The cloud manufacturing system is a kind of large-scale CPS that produces products through the collaboration of distributed manufacturing facilities based on technologies such as cloud computing, IoT, and virtualization. It utilizes diverse and distributed facilities based on centralized information systems, which allows flexible composition user-centric and service-oriented large-scale systems. However, the cloud manufacturing system is composed of a large number of highly heterogeneous subsystems. It has difficulties in interconnection, data exchange, information processing, and system verification for system construction. In this paper, we derive the user requirements of various aspects of the cloud manufacturing system, such as functional, human, trustworthiness, timing, data and composition, based on the CPS Framework, which is the analysis methodology for CPS. Next, by analyzing the user requirements we define the system requirements including scalability, composability, interactivity, dependability, timing, interoperability and intelligence. We map the defined CPS system requirements to the requirements of oneM2M, which is the platform standard for IoT, so that the support of the system requirements at the level of the IoT platform is verified through Mobius, which is the implementation of oneM2M standard. Analyzing the verification result, finally, we propose a large-scale cloud manufacturing platform based on oneM2M that can meet the cloud manufacturing requirements to support the overall features of the Cloud Manufacturing CPS with dependability.

Analysis of Technical Factors for Multidisplinary Cloud Service Model and Development of Service Model based on Use Case (유즈 케이스 기반의 융.복합 클라우드 서비스 모델을 위한 요소 기술 분석 및 서비스 모델 개발)

  • Seo, Kwang-Kyu
    • Journal of Digital Convergence
    • /
    • v.10 no.10
    • /
    • pp.545-550
    • /
    • 2012
  • The size of global IT convergence market is expected to increase more and more and cloud computing in industrial convergence environment provides the useful solutions to support convergence environment between other industries. It is necessary and important to predict and develop integrated service structures and types of combining cloud computing and other application technologies. Therefore this paper presents technical factors to provide cloud service. In additions, the requirement and technical factors for various convergence service models are introduced and analyzed using use case which is efficient modelling methodology to construct many system. Using the research results, we performed the case study to develop a convergence cloud service. Eventually, this study is expected to use the basic researches to develop the various the multidisplinary cloud service models based on use case to create the new values.

An Analysis of Linguistic Characteristics of Information Protection Policies to Improve the Effectiveness of Information Protection in Cloud Computing Services (클라우드 컴퓨팅 서비스의 정보보호 실효성 증진을 위한 정보보호 정책의 언어적 특성 분석)

  • Jeong, Eun-Han;Kim, Kyung-Ihl
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.10
    • /
    • pp.15-23
    • /
    • 2020
  • It is a reality that users do not know well what kind of information protection policy the cloud service provider presents to consumers. The purpose of this study is to find a way to improve the effectiveness of information protection by analyzing the content and linguistic characteristics of information protection policies provided by cloud service providers. In order to achieve the purpose of this study, we investigate the contents of information protection policies of 47 companies that provide cloud services and analyze the influence of linguistic characteristics to come up with a plan to increase the efficiency of cloud services. The research results showed that low readability due to comprehensive expression of technical processing methods, etc., could lead to legal disputes and to hinder the spread of cloud services. The research results can increase the effectiveness of information protection by suggesting items to be provided to users.ing, Privacy, confidentiality, linguistic characteristics, Accounting Information.

Key Management for Secure Internet of Things(IoT) Data in Cloud Computing (클라우드 컴퓨팅에서 안전한 사물인터넷 데이터를 위한 키 관리)

  • Sung, Soon-hwa
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.27 no.2
    • /
    • pp.353-360
    • /
    • 2017
  • The Internet of Things(IoT) security has more need than a technical problem as it needs series of regulations and faultless security system for common purposes. So, this study proposes an efficient key management in order that can be trusted IoT data in cloud computing. In contrast with a key distribution center of existing sensor networks, the proposed a federation key management of cloud proxy key server is not central point of administration and enables an active key recovery and update. The proposed key management is not a method of predetermined secret keys but sharing key information of a cloud proxy key server in autonomous cloud, which can reduce key generation and space complexity. In addition, In contrast with previous IoT key researches, a federation key of cloud proxy key server provides an extraction ability from meaningful information while moving data.

Cloud Computing-Based Processing of Large Volume UAV Images Acquired in Disaster Sites (재해/재난 현장에서 취득한 대용량 무인기 영상의 클라우드 컴퓨팅 기반 처리)

  • Han, Soohee
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_3
    • /
    • pp.1027-1036
    • /
    • 2020
  • In this study, a cloud-based processing method using Agisoft Metashape, a commercial software, and Amazon web service, a cloud computing service, is introduced and evaluated to quickly generate high-precision 3D realistic data from large volume UAV images acquired in disaster sites. Compared with on-premises method using a local computer and cloud services provided by Agisoft and Pix4D, the processes of aerial triangulation, 3D point cloud and DSM generation, mesh and texture generation, ortho-mosaic image production recorded similar time duration. The cloud method required uploading and downloading time for large volume data, but it showed a clear advantage that in situ processing was practically possible. In both the on-premises and cloud methods, there is a difference in processing time depending on the performance of the CPU and GPU, but notso much asin a performance benchmark. However, it wasfound that a laptop computer equipped with a low-performance GPU takes too much time to apply to in situ processing.

Performance and Energy Oriented Resource Provisioning in Cloud Systems Based on Dynamic Thresholds and Host Reputation (클라우드 시스템에서 동적 임계치와 호스트 평판도를 기반으로 한 성능 및 에너지 중심 자원 프로비저닝)

  • Elijorde, Frank I.;Lee, Jaewan
    • Journal of Internet Computing and Services
    • /
    • v.14 no.5
    • /
    • pp.39-48
    • /
    • 2013
  • A cloud system has to deal with highly variable workloads resulting from dynamic usage patterns in order to keep the QoS within the predefined SLA. Aside from the aspects regarding services, another emerging concern is to keep the energy consumption at a minimum. This requires the cloud providers to consider energy and performance trade-off when allocating virtualized resources in cloud data centers. In this paper, we propose a resource provisioning approach based on dynamic thresholds to detect the workload level of the host machines. The VM selection policy uses utilization data to choose a VM for migration, while the VM allocation policy designates VMs to a host based on its service reputation. We evaluated our work through simulations and results show that our work outperforms non-power aware methods that don't support migration as well as those based on static thresholds and random selection policy.

A 2-Tier Server Architecture for Real-time Multiple Rendering (실시간 다중 렌더링을 위한 이중 서버 구조)

  • Lim, Choong-Gyoo
    • Journal of Korea Game Society
    • /
    • v.12 no.4
    • /
    • pp.13-22
    • /
    • 2012
  • The wide-spread use of the broadband Internet service makes the cloud computing-based gaming service possible. A game program is executed on a cloud node and its live image is fed into a remote user's display device via video streaming. The user's input is immediately transmitted and applied to the game. The minimization of the time to process remote user's input and transmit the live image back to the user and thus satisfying the requirement of instant responsiveness for gaming makes it possible. However, the cost to build its servers can be very expensive to provide high quality 3D games because a general purpose graphics system that cloud nodes are likely to have for the service supports a single 3D application at a time. Thus, the server must have a technology of 'realtime multiple rendering' to execute multiple 3D games simultaneously. This paper proposes a new architecture of 2-tier servers of clouds nodes of which one group executes multiple games and the other produces game's live images. It also performs a few experimentations to prove the feasibility of the new architecture.

Quantization Data Transmission for Optimal Path Search of Multi Nodes in cloud Environment (클라우드 환경에서 멀티 노드들의 최적 경로 탐색을 위한 양자화 데이터 전송)

  • Oh, HyungChang;Kim, JaeKwon;Kim, TaeYoung;Lee, JongSik
    • Journal of the Korea Society for Simulation
    • /
    • v.22 no.2
    • /
    • pp.53-62
    • /
    • 2013
  • Cloud environment is one in the field of distributed computing and it consists of physical nodes and virtual nodes. In distributed cloud environment, an optimal path search is that each node to perform a search for an optimal path. Synchronization of each node is required for the optimal path search via fast data transmission because of real-time environment. Therefore, a quantization technique is required in order to guarantee QoS(Quality of Service) and search an optimal path. The quantization technique speeds search data transmission of each node. So a main server can transfer data of real-time environment to each node quickly and the nodes can perform to search optimal paths smoothly. In this paper, we propose the quantization technique to solve the search problem. The quantization technique can reduce the total data transmission. In order to experiment the optimal path search system which applied the quantized data transmission, we construct a simulation of cloud environment. Quantization applied cloud environment reduces the amount of data that transferred, and then QoS of an application for the optimal path search problem is guaranteed.