• 제목/요약/키워드: 크롬질화코팅

검색결과 3건 처리시간 0.227초

질화 지르코늄 코팅이 코발트 크롬 합금과 타이타늄 합금에서 의치상 레진과의 전단결합강도에 미치는 영향 (The effect of Zirconium Nitride coating on shear bond strength with denture base resin in Co-Cr alloy and titanium alloy)

  • 박찬;이경훈;임현필
    • 구강회복응용과학지
    • /
    • 제32권3호
    • /
    • pp.194-201
    • /
    • 2016
  • 목적: 본 연구는 Co-Cr, Ti-6Al-4V 합금에 Zirconium Nitride (이하 ZrN) 적용 시, 의치상 레진과의 접착력을 비교하는 것이다. 연구 재료 및 방법: Co-Cr, Ti-6Al-4V 디스크(직경 10 mm, 두께 2.5 mm)를 각각 14개씩 제작하였고, ZrN 코팅에 따라 2개의 그룹으로 나누었다. Primer로 시편 전처리 후, 의치상 레진(직경 6 mm, 두께 5 mm)을 부착하였다. 표면 측정기를 이용하여 시편의 거칠기를 측정한 후, 만능 시험기를 이용하여 전단결합강도를 측정하였으며, 이원분산분석으로 통계 분석하였다. 시편 표면과 파절 양상을 주사전자현미경을 이용하여 관찰하였다. 결과: ZrN을 코팅한 시편에서 유의하게 높은 표면 거칠기를 나타내었고(P < 0.05), 전단결합강도는 낮았다(P < 0.001). ZrN 코팅 시편에서는 혼합성 파절과 부착성 파절이 함께 나타났다. 결론: Co-Cr, Ti-6Al-4V 합금에서 ZrN 코팅 처리는 의치상 레진과의 결합력을 약화시켰다.

SM45C재의 PVD코팅과 필름에 의한 트라이볼러지 특성 (Variations in Tribological Characteristics of SM45C by PVD Coating and Thin Films)

  • 심현보;서창민;김종형;서민수
    • 한국해양공학회지
    • /
    • 제32권6호
    • /
    • pp.502-510
    • /
    • 2018
  • In order to accumulate data to lower the friction coefficient of a press mold, tribological tests were performed before and after coating SM45C with a PVC/PO film and plasma coating (CrN, concept). The ultrasonic nanocrystal surface modification (UNSM)-treated material had a nano-size surface texture, high surface hardness, and large and deep compressive residual stress formation. Even when the load was doubled, the small amount of abrasion, small weight of the abrasion, and width and depth of the abrasion did not increase as much as those of untreated materials. A comparison of the weight change before and after the tribological test with the CrN and the concept coating material and that of the untreated material showed that the wear loss of the concept coating material and P-UNSM treated material (that is, the UNSM treated material treated with the concept coating) showed a tendency to decrease by approximately 55-75%. Concept 100N had a lower friction coefficient of about 0.6, and P-UNSM-30-100N showed almost the same curve as concept 100N and had a low coefficient of friction of about 0.6. The concept multilayer coating had a thickness of $5.32{\mu}m$. In the beginning, the coefficient of friction decreased because of the plasma coating, but it started to increase from about 250-300 s. After about 350 s, the coefficient of friction tended to approach the friction coefficient of the SM45C base metal. The SGV-280F film-attached test specimen was slightly pushed back and forth, but the SM45C base material was not exposed due to abrasion. The friction coefficient was 0.22, which was the lowest, and the tribological property was the best in this study.

금속분리판의 Electro Polishing 및 CrN 코팅을 통한 PEMFC 성능 향상을 위한 연구 (A Study to Improve PEMFC Performance by Using Electro Polishing and CrN Coating on Metal Bipolar Plate)

  • 황성택;천승호;송준석;윤영훈;김병헌;장하;김대웅;현덕수;오병수
    • 한국자동차공학회논문집
    • /
    • 제22권4호
    • /
    • pp.65-71
    • /
    • 2014
  • As an important component of a fuel cell, the bipolar plate comprises a large proportion in the fuel cell's volume, weight and price. The bipolar plate is the most widely used; however, graphite bipolar plate is large in volume, brittle and therefore easily broken during assembling. In addition, due to its poor machinability, production costs a lot, unless mass production. Compared with the graphite bipolar plate, the metal bipolar plate has good machinability, high electric conductivity and strong mechanical strength; however, it corrodes easily and has a high contact resistance, so in order to prevent corrosion and reduce the contact resistance, the basic metal needs to be processed by use of electro polishing and coating. The water which is produced by electrochemical reactions in the fuel cell must be discharged smoothly. In this study, in order to prevent corrosion the processes of electro polishing and CrN coating were used. According to the presence or absence of these processes, the contact angles can be measured and different metal bipolar plates can be made, these plates can be used for comparing and analyzing the performance of the fuel cell.