• Title/Summary/Keyword: 크랙 발생

Search Result 263, Processing Time 0.018 seconds

A Study on Tensile Property due to Stacking Structure by Fiber Design of CT Specimen Composed of CFRP (CFRP로 구성된 CT시험편의 섬유설계에 의한 적층구조에 따른 인장 특성 연구)

  • Hwang, Gue-Wan;Cho, Jae-Ung
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.11
    • /
    • pp.447-455
    • /
    • 2017
  • At the modern industry, the composite material has been widely used. Particularly, the material of carbon fiber reinforced plastic hardened with resin on the basis of fiber is excellent. As the specific strength and rigidity are also superior, it receives attention as the light material. Among these materials, the carbon fiber reinforced plastic using carbon fiber has the superior mechanical property different from another fiber. So, it is utilized in vehicle and airplane at which high strength and light weight are needed at the same time. In this paper, the tensile property due to the fiber design is investigated through the analysis study with CT specimen composed of carbon plastic reinforced plastic. At the stress analysis of CFRP composite material with hole, the fracture trend at the tensile environment is examined. Also, it is shown that the lowest stress value happens and the deformation energy of the pre-crack becomes lowest at the analysis model composed of the stacking angle of 60° through the result due to the stacking angle. On the basis of this study result, it is thought to apply the foundation data to anticipate the fracture configuration at the structure applied with the practical experiment.

Two Dimensional Size Effect on the Compressive Strength of Composite Plates Considering Influence of an Anti-buckling Device (좌굴방지장치 영향을 고려한 복합재 적층판의 압축강도에 대한 이차원 크기 효과)

  • ;;C. Soutis
    • Composites Research
    • /
    • v.15 no.4
    • /
    • pp.23-31
    • /
    • 2002
  • The two dimensional size effect of specimen gauge section ($length{\;}{\times}{\;}width$) was investigated on the compressive behavior of a T300/924 $\textrm{[}45/-45/0/90\textrm{]}_{3s}$, carbon fiber-epoxy laminate. A modified ICSTM compression test fixture was used together with an anti-buckling device to test 3mm thick specimens with a $30mm{\;}{\times}{\;}30mm,{\;}50mm{\;}{\times}{\;}50mm,{\;}70mm{\;}{\times}{\;}70mm{\;}and{\;}90mm{\;}{\times}{\;}90mm$ gauge length by width section. In all cases failure was sudden and occurred mainly within the gauge length. Post failure examination suggests that $0^{\circ}$ fiber microbuckling is the critical damage mechanism that causes final failure. This is the matrix dominated failure mode and its triggering depends very much on initial fiber waviness. It is suggested that manufacturing process and quality may play a significant role in determining the compressive strength. When the anti-buckling device was used on specimens, it was showed that the compressive strength with the device was slightly greater than that without the device due to surface friction between the specimen and the device by pretoque in bolts of the device. In the analysis result on influence of the anti-buckling device using the finite element method, it was found that the compressive strength with the anti-buckling device by loaded bolts was about 7% higher than actual compressive strength. Additionally, compressive tests on specimen with an open hole were performed. The local stress concentration arising from the hole dominates the strength of the laminate rather than the stresses in the bulk of the material. It is observed that the remote failure stress decreases with increasing hole size and specimen width but is generally well above the value one might predict from the elastic stress concentration factor. This suggests that the material is not ideally brittle and some stress relief occurs around the hole. X-ray radiography reveals that damage in the form of fiber microbuckling and delamination initiates at the edge of the hole at approximately 80% of the failure load and extends stably under increasing load before becoming unstable at a critical length of 2-3mm (depends on specimen geometry). This damage growth and failure are analysed by a linear cohesive zone model. Using the independently measured laminate parameters of unnotched compressive strength and in-plane fracture toughness the model predicts successfully the notched strength as a function of hole size and width.

Evaluation of the Curvature Reliability of Polymer Flexible Meta Electronic Devices based on Variations of the Electrical Properties (전기적 특성 변화를 통한 고분자 유연메타 전자소자의 곡률 안정성 평가)

  • Kwak, Ji-Youn;Jeong, Ji-Young;Ju, Jeong-A;Kwon, Ye-Pil;Kim, Si-Hoon;Choi, Doo-Sun;Je, Tae-Jin;Han, Jun Sae;Jeon, Eun-chae
    • Applied Chemistry for Engineering
    • /
    • v.32 no.3
    • /
    • pp.268-276
    • /
    • 2021
  • As wireless communication devices become more common, interests in how to control the electromagnetic waves generated from the devices are increasing. One of the most commonly used electromagnetic wave control materials is magnetic one, but due to the features that make the product heavy and thick when applied to the product, it is difficult to use them in curved electronic devices. Therefore, a polymer flexible meta electronic device has been presented to sort out the problem, which is thin and can have various curvatures. However, it requires an additional evaluation of curvature reliability. In this study, we developed a method to predict electromagnetic wave control characteristics through the resistance/length of the conductive ink line patterns of polymer flexible meta electronic devices, which is inversely proportional to the electromagnetic wave control characteristics. As the radius of curvature decreased, the resistance/length increased, and there was little variations with the duration times of curvature. We also found that both permanent and recoverable changes along with the removal of curvature were occurred when the curvature was applied, and that the cause of these changes was newly created vertical cracks in the conductive ink line pattern due to the tensile stress applied by applying curvature.