• Title/Summary/Keyword: 쿨롱효율

Search Result 38, Processing Time 0.022 seconds

Effect of External Resistance on Electrical Properties of Two-Chamber type Microbial Fuel Cells (이형반응기 미생물연료전지의 전기적 특성에 미치는 외부저항의 영향)

  • Lee, Myoung-Eun;Jo, Se-Yeon;Chung, Jae-Woo;Song, Young-Chae;Woo, Jung-Hui;Yoo, Kyu-Seon;Lee, Chae-Young
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.3
    • /
    • pp.167-173
    • /
    • 2011
  • The Effects of external resistance on electrical properties such as current density, power density and coulombic efficiency were investigated in two-chamber type MFCs using a ferricyanide as reducing agent. A stable electricity was produced when a constant time elapsed after innoculation of mixed cultures into the anode compartment; voltages from 0.13 to 0.16 V was measured at $50{\Omega}$ of external resistance. When the external resistance was increased, the current density decreased and the power density rapidly increased and then slowly decreased. Big variation of electrical properties was observed in high-current density region due to the concentration loss related with substrate consumption in repeated experiments changing the external resistance. The maximum power density ($175.8mW/m^2$) and coulombic efficiency (46.1%) were obtained at $100{\Omega}$ of the external resistance which is nearest with the internal resistance ($134{\Omega}$) of MFC system.

Characteristics of Organic Material Removal and Electricity Generation in Continuously Operated Microbial Fuel Cell (연속류식 미생물연료전지의 유기물 제거 및 전기 발생 특성)

  • Kim, Jeong-Gu;Jeong, Yeon-Koo;Park, Song-In
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.18 no.1
    • /
    • pp.57-65
    • /
    • 2010
  • Two types of microbial fuel cells(MFC) were continuously operated using synthetic wastewater. One was conventional two-chambered MFC using proton exchange membrane(PEM-MFC), the other was upflow type membraneless MFC(ML-MFC). Graphite felt was used as a anode in PEM-MFC. In membraneless MFC, two MFCs were operated using porous RVC(reticulated vitreous carbon) as a anode. Graphite felt was used as a cathode in all experiments. In experiment of PEM-MFC, the COD removal rate based on the surface area of anode was about $3.0g/m^2{\cdot}d$ regardless of organic loading rate. And the coulombic efficiency amounted to 22.4~23.4%. The acetic acid used as a fuel was transferred through PEM from the anodic chamber to cathodic chamber. The COD removal rate in ML-MFC were $9.3{\sim}10.1g/m^2{\cdot}d$, which indicated the characteristics of anode had no significant effects on COD removal. Coulombic efficiency were 3.6~3.7 % in both cases of ML-MFC experiments, which were relatively small. It was also observed that the microbial growth in cathodic chamber had an adverse effects on the electricity generation in membraneless MFC.

The Enhanced Electrochemical Performance of Lithium Metal Batteries through the Piezoelectric Protective Layer (압전 특성의 보호층을 통한 리튬 금속 전지의 전기화학적 특성 개선)

  • Dae Ung Park;Weon Ho Shin;Hiesang Sohn
    • Membrane Journal
    • /
    • v.33 no.1
    • /
    • pp.13-22
    • /
    • 2023
  • Despite high capacity of lithium metal anode, its uncontrollable dendrite growth results in the poor electrochemical (EC) performance (low Coulomb efficiency and limited cycle stability) and unsafe operation. In this study, we demonstrated a lithium metal anode protected with BaTiO3/PVDF based piezoelectric layer to enhance its EC performance by utilizing the locally polarized lithium metal after volume expansions. As-formed lithium metal electrode deposited with BTO@PVDF layer exhibited an enhanced Coulombic efficiency (> 98% for 100 cycles) and facilitated lithium ion diffusions (lithium diffusion coefficient: DLi+), revealing the effectiveness of piezoelectric layer deposited lithium metal electrode approach.

Synthesis of Polyaniline/WO3 Anode for Lithium Ion Capacitor and Its Electrochemical Characteristics under Light Irradiation (리튬이온커패시터용 Polyaniline/WO3 음극 제조 및 이의 광 조사에 따른 전기화학적 특성 변화)

  • Park, Yiseul
    • Korean Chemical Engineering Research
    • /
    • v.56 no.6
    • /
    • pp.884-889
    • /
    • 2018
  • In this study, polyaniline $(PANI)/WO_3$ electrode was prepared as an anode of a lithium ion capacitor, and its electrochemical characteristics were measured and analyzed. When PANI was electrochemically deposited on the surface of $WO_3$ electrode, the capacity of $PANI/WO_3$ was improved with increase of the deposited amounts of PANI. Furthermore, the effect of light irradiation on capacity and coulombic efficiency was examined by irradiating sunlight during charging and discharging. When the light was irradiated to the $WO_3$ electrode and the $PANI/WO_3$ electrode, those capacities and coulombic efficiencies were increased compared to that measured under the dark condition. It is attributed to the photocatalytic property of $WO_3$ that can generate photoelectrons by light irradiation. In $PANI/WO_3$ electrode, PANI also can be excited under the light irradiation with affecting the electrochemical property of electrode. The photoelectrons improve the capacity by participating in the intercalation of $Li^+$ ions, and also improve the coulombic efficiency by facilitating electrons' transport. Under the dark condition, the capacity of $PANI/WO_3$ was gradually reduced with increase of cycles due to a poor stability of PANI. However, the stability of PANI was significantly improved by the light irradiation, which is attributed to the oxidation-reduction reaction originated from the photogenerated electrons and holes in $PANI/WO_3$.

Microbial Fuel Cells for Bioenergy Generation and Wastewater Treatment (바이오에너지 생산 및 폐수처리를 위한 미생물연료전지)

  • Nah, Jaw-Woon;Roh, Sung-Hee
    • Applied Chemistry for Engineering
    • /
    • v.24 no.6
    • /
    • pp.567-578
    • /
    • 2013
  • A microbial fuel cell (MFC) is a bio-electrochemical device that converts chemical energy in the chemical bonds in organic compounds to electrical energy through catalytic reactions of microorganisms under anaerobic conditions. Power density and Coulombic efficiency are significantly affected by the types of microbe in the anodic chamber of an MFC, configurations of the system and operating conditions. The achievable power output from MFC increased remarkably by modifying their designs such as the optimization of MFC configurations, the physical and chemical operating conditions, and the choice of biocatalysts. This article presents a critical review on the recent advances made in MFC research with the emphasis on MFC configurations, optimization of important operating parameters, performances and future applications of MFC.

온도 변화에 따른 격자 부정합한 반도체 양자 우물에서의 전자적 구조와 광 이득

  • Yu, Ju-Hyeong;Kim, Tae-Hwan;Yu, Geon-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.163-163
    • /
    • 2010
  • 저차원 나노양자구조에서 전자적 구조와 광 이득에 대한 연구는 전자소자나 광소자의 효율을 증진시키는데 중요한 역할을 하고 있다. 전자적 부띠 구조를 결정하기 위해서는 변형효과와 비포물선 효과를 고려하여 계산하면 나노 양자구조의 전자적 구조를 비교적 정확하게 계산 할 수 있다. 양자우물에서의 광 이득은 전자적 구조에 따른 전도 대역의 전자와 가전자 대역의 정공 사이에 발생하는 쿨롱 상호작용에 의한 엑시톤 결합 에너지를 고려함으로 정확히 계산할 수 있다. 본 연구에서는 양자 우물의 격자 부정합에 따른 변형효과와 전도대역에서 전자 에너지의 비포물선 효과가 양자 우물의 전자적 성질에 미치는 영향에 대하여 조사하였다. 또한, 온도변화에 따른 양자 우물의 전자적 구조를 계산하였고, 전자적 구조에 따라 엑시톤 결합 에너지가 광 이득에 미치는 영향을 계산하였다. 양자우물 구조에서 전자 및 정공의 부띠에너지, 파동함수 및 부띠천이 에너지를 가변메시 유한차분법으로 결정하였고, interacting pair Green's function 방법과 energy space integrated function 방법을 이용하여 광 이득을 계산하였다. 계산한 결과를 광루미네센스 측정으로 관측한 부띠에너지 천이와 비교하여 변형효과와 비포물선 효과가 전자적 구조에 미치는 영향과 엑시톤 결합 에너지가 광 이득에 미치는 영향에 대하여 비교하였다. 반도체 양자우물의 전자적 구조는 변형효과와 비포물선 효과에 의하여 영향을 받고 있는 것을 알 수 있었다. 또한, 전자-정공의 쿨롱 상호작용을 고려하여 계산한 광 이득이 온도 변화에 따라 관측한 실험 결과와 잘 맞는 것을 알 수 있었다. 이러한 결과는 격자 부정합한 화합물 반도체 양자우물의 저차원적인 전자적 구조와 광 특성을 이해하는데 많은 도움이 된다고 생각된다.

  • PDF

The Influence of Impurities in Room Temperature Ionic Liquid Electrolyte for Lithium Ion Batteries Containing High Potential Cathode (고전압 리튬이차전지를 위한 LiNi0.5Mn1.5O4 양극용 전해질로써 상온 이온성 액체 전해질의 불순물 효과에 관한 연구)

  • Kim, Jiyong;Tron, Artur V.;Yim, Taeeun;Mun, Junyoung
    • Journal of the Korean Electrochemical Society
    • /
    • v.18 no.2
    • /
    • pp.51-57
    • /
    • 2015
  • We report the effect of the impurities including water and bromide in the propylmethylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PMPyr-TFSI) on the electrochemical performance of lithium ion batteries. The several kinds of PMPyr-TFSI electrolytes with different amount of impurities are applied as the electrolyte to the cell with the high potential electrode, $LiNi_{0.5}Mn_{1.5}O_4$ spinel. It is found that the impurities in the electrolytes cause the detrimental effect on the cell performance by tracing the cycleability, voltage profile and Coulombic efficiency. Especially, the polarization and Coulombic efficiency go to worse by both impurities of water and bromide, but the cycleability was not highly influenced by bromide impurity unlike the water impurity.

Microbial Enrichment and Community Analysis for Bioelectrochemical Acetate Production from Carbon Dioxide (이산화탄소로부터 생물전기화학적 아세트산 생산을 위한 미생물 농화배양 및 군집 분석)

  • Kim, Junhyung;Kim, Young-Eun;Park, Myeonghwa;Song, Young Eun;Seol, Eunhee;Kim, Jung Rae;Oh, You-Kwan
    • New & Renewable Energy
    • /
    • v.16 no.1
    • /
    • pp.58-67
    • /
    • 2020
  • Microbial electrosynthesis has recently been considered a potentially sustainable biotechnology for converting carbon dioxide (CO2) into valuable biochemicals. In this study, bioelectrochemical acetate production from CO2 was studied in an H-type two-chambered reactor system with an anaerobic microbial consortium. Metal-rich mud flat was used as the inoculum and incubated electrochemically for 90 days under a cathode potential of -1.1 V (vs. Ag/AgCl). Four consecutive batch cultivations resulted in a high acetate concentration and productivity of 93 mmol/L and 7.35 mmol/L/day, respectively. The maximal coulombic efficiency (rate of recovered acetate from supplied electrons) was estimated to be 64%. Cyclic voltammetry showed a characteristic reduction peak at -0.2~-0.4 V, implying reductive acetate generation on the cathode electrode. Furthermore, several electroactive acetate-producing microorganisms were identified based on denaturing- gradient-gel-electrophoresis (DGGE) and 16S rRNA sequence analyses. These results suggest that the mud flat can be used effectively as a microbial source for bioelectrochemical CO2 conversion.

Recent Advance on Composite Membrane Based Vanadium Redox Flow Battery (복합막 기반 바나듐 레독스 흐름 전지의 최근 발전)

  • Kyobin Yoo;Rajkumar Patel
    • Membrane Journal
    • /
    • v.33 no.5
    • /
    • pp.233-239
    • /
    • 2023
  • The transport properties of membranes used in vanadium redox flow batteries (VRFB) are fundamental in battery performance. High proton conductivity and low vanadium ion permeability must be achieved to achieve high battery performance. However, there is a trade-off relationship between proton conductivity and vanadium ion permeability. So, solving this trade-off relationship is crucial in VRFB development. Also, maintaining high coulombic efficiency, voltage efficiency, and energy efficiency is essential for high-performing VRFB. Recently, various attempts have been made, primarily on composite membranes and SPEEK membranes, to overcome the existing limit of Nafion membranes. VRFB is an essential class of rechargeable battery in composite membranes reviewed here.

High Coulombic Efficiency Negative Electrode(SiO-Graphite) for Lithium Ion Secondary Battery (리튬이온이차전지용 고효율 음극(SiO-Graphite))

  • Shin, Hye-Min;Doh, Chil-Hoon;Kim, Dong-Hun;Kim, Hyo-Seok;Ha, Kyung-Hwa;Jin, Bong-Soo;Kim, Hyun-Soo;Moon, Seong-In;Kim, Ki-Won;Oh, Dae-Hui
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.1
    • /
    • pp.47-50
    • /
    • 2008
  • A new anode composition material comprising of SiO and Graphite has been prepared by adopting High energy ball milling (HEBM) technique. The anode material shows high initial charge and discharge capacity values of 1139 and 568 mAh/g, respectively. The electrode sustains reversible discharge capacity value of 719 mAh/g at 30th cycle with a high coulombic efficiency${\sim}99%$. Since the materials formed during initial charge process the nano silicon/$Li_4SiO_3$ and $Li_2O$ remains as interdependent, it may be expected that the composite exhibiting higher amount of irreversibility$(Li_2O)$ will deliver higher reversible capacity. In this study, constant current-constant voltage (CC-CV) charge method was employed in place of usual constant current (CC) method in order to convert efficiently all the SiO particles which resulted high initial discharge capacity at the first cycle. We improved considerably the initial discharge specific capacity of SiO/G composite by pretreatment(CC-CV).