• Title/Summary/Keyword: 콤팩트 열교환기

Search Result 10, Processing Time 0.038 seconds

An Experimental Study on the Performance of Diffusion Bonding Heat Exchangers (확산접합 콤팩트 열교환기의 성능에 관한 실험적 연구)

  • Kwon, Oh-Kyung;Cha, Dong-An;Yun, Jae-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.1
    • /
    • pp.53-59
    • /
    • 2009
  • The objectives of this paper are to study the characteristics of heat transfer and pressure drop of the micro channel heat exchangers using diffusion bonding technology. Four types of heat exchangers are designed and manufactured, which are straight type, long dot type, splited wavy type and straight double side type. Heat transfer and pressure drop performance of each heat exchangers are measured in various operating conditions, and compared each other. The results show that the $(j/f)^{1/3}$ performance of splited wavy type and long dot type increases about 10.3% and 6.1% at the Reynolds number 470 compared to that of straight type, respectively. On the other hand, $(j/f)^{1/3}$ performance of straight double side type decreases 19.7%.

An Experimental Study on the Performance of Diffusion Bonding Heat Exchangers (확산접합 콤팩트 열교환기의 성능에 관한 실험적 연구)

  • Kwon, Oh-Kyung;Cha, Dong-An;Choi, Mi-Jin;Yun, Jae-Ho
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2304-2309
    • /
    • 2008
  • The objectives of this paper are to study the characteristics of heat transfer and pressure drop of the micro channel heat exchangers using diffusion bonding technology. Four types of heat exchangers are designed and manufactured, which are straight type, long dot type, splited wavy type and straight double side type. Heat transfer and pressure drop performance of each heat exchangers are measured in various operating conditions, and compared each other. The results show that the $(j/f)^{1/3}$ performance of splited wavy type and long dot type increases about 10.3% and 6.1% at the Reynolds number 470 compared to that of straight type, respectively. On the other hand, $(j/f)^{1/3}$ performance of straight double side type decreases 19.7%.

  • PDF

Condensing heat transfer characteristics of alternative refrigerants in small diameter tubes (세관내 대체냉매의 응축 열전달 특성)

  • 오후규;홍진우
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.28 no.5
    • /
    • pp.396-402
    • /
    • 1999
  • 1980년대부터 본격적으로 제기된 대기 환경 오염 문제로 인해서 CFCs 및 HCFCs계 냉매에 대한 대체 연구가 활발히 진행되었는데, 이와 관련한 열교환기의 고성능화, 콤팩트화 등에 관한 연구도 광범위하게 이루어지고 있다. 이중에서 특기할만 한 것은 종래의 전열관보다 관경이 대단히 적은 세관을 적용하는 경우가 있으며, 그 적응 범위도 점점 더 넓어질 전망이다. 이것은 유효전열 면적의 극대화, 난류효과의 상승, 가공성기 향상, 유연성 등 세관만이 가질 수 있는 여러 가지 전열 성능상의 장점 때문이라 생각한다.

  • PDF

Heat Transfer and Pressure Drop Characteristics in Zigzag Channel Angles of Printed Circuit Heat Exchangers (지그재그채널 PCHE의 각도에 따른 열전달 및 압력강하특성)

  • Choi, Mi-Jin;Kwon, Oh-Kyung;Cha, Dong-An;Yeun, Jae-Ho
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1147-1152
    • /
    • 2009
  • The objectives of this paper are to study the characteristics of heat transfer and pressure drop of the zigzag channel PCHE using diffusion bonding technology by numerical analysis. PCHE of five types are designed, which are zigzag channel angle $180^{\circ}$, $160^{\circ}$, $140^{\circ}$, $120^{\circ}$ and $100^{\circ}$. The zigzag PCHE was numerically investigated for Reynolds number in a range of $150{\sim}800$. The temperatures of the hot side were performed at $80^{\circ}C$ while that of the cold side was conducted at $20^{\circ}C$. The results show that the performance of heat transfer rate for zigzag channel $100^{\circ}$ increases about 11.5% compared to that of zigzag channel $180^{\circ}$. On the other hand, the performance of pressure drop for zigzag channel $100^{\circ}$ is remarkably higher than that of zigzag channel $180^{\circ}$, about 1.4 times.

  • PDF

A Development of Heat Exchanger by using Small Bore Two-Port Tube (연결세경관을 이용한 열교환기의 개발)

  • Lee, Sangmu;Park, Byung-Duck
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.2
    • /
    • pp.63-68
    • /
    • 2015
  • The fin and tube type heat exchangers widely used in air conditioners have been developed to improve on the heat transfer performance and compactness. This study presents the new type of tube for the heat exchanger to improve the heat transfer performance by increasing the heat transfer area per unit volume in the air-conditioner heat exchanger. The new type tube can be used for mechanical expansion facility, due to the two-port copper tube. Numerical calculation shows that the heat exchanger using the two-port copper tube outperforms the conventional heat-exchanger using a circular copper tube, in terms of the increased heat transfer coefficient and higher pressure drop. The calculation results were experimentally validated and are in agreement with the experimental results. Compared to the heat exchanger using a conventional circular tube, the heat exchanger with a two-port tube increased the heat transfer coefficient up to 21%, and the pressure dropped up to 16%.

Heat Transfer and Pressure Drop Characteristics in Zigzag Channel Angles of Printed Circuit Heat Exchangers (지그재그채널 PCHE의 각도에 따른 열전달 및 압력강하특성)

  • Kwon, Oh-Kyung;Choi, Mi-Jin;Choi, Young-Jong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.9
    • /
    • pp.475-482
    • /
    • 2009
  • The objectives of this paper are to study the characteristics of heat transfer and pressure drop of the zigzag channel PCHE using diffusion bonding technology by numerical analysis. PCHE of five types are designed, which are zigzag channel angle 180$^{\circ}$, 160$^{\circ}$, 140$^{\circ}$, 120$^{\circ}$ and 100$^{\circ}$. The zigzag PCHE was numerically investigated for Reynolds number in a range of 150$\sim$800. The temperatures of the hot side were performed at 80$^{\circ}$ while that of the cold side was conducted at 20$^{\circ}C$. The results show that the performance of heat transfer rate for zigzag channel 100$^{\circ}$ increases about 11.5% compared to that of zigzag channel 180$^{\circ}$. On the other hand, the performance of pressure drop for zigzag channel 100$^{\circ}$ is remarkably higher than that of zigzag channel 180$^{\circ}$, about 2.4 times.

Effect of Bonding Temperature and Bonding Pressure on Deformation and Tensile Properties of Diffusion Bonded Joint of STS304 Compact Heat Exchanger (STS304 콤팩트 열교환기 고상확산접합부의 접합부 변형과 인장성질에 미치는 접합온도 및 접합압력의 영향)

  • Jeon, Ae-Jeong;Yoon, Tae-Jin;Kim, Sang-Ho;Kim, Hyeon-Jun;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.32 no.4
    • /
    • pp.46-54
    • /
    • 2014
  • In this study, the effect of bonding temperature and bonding pressure on deformation and tensile properties of diffusion bonded joint of STS304 compact heat exchanger was investigated. The diffusion bonds were prepared at 700, 800 and $900^{\circ}C$ for 30, 60 and 90 min in pressure of 3, 5, and 7 MPa under high vacuum condition. The height deformation of joint decreased and the width deformation of joint increased with increasing bonding pressure at $900^{\circ}C$. The ratio of non-bonded layer and void observed in the joint decreased with increasing bonding temperature and bonding pressure. Three types of the fracture surface were observed after tensile test. The non-bonded layer was observed in diffusion bonded joint preformed at $700^{\circ}C$, the non-bonded layer and void were observed at $800^{\circ}C$. On the other hand, the ductile fracture occurred in diffusion bonded joint preformed at $900^{\circ}C$. Tensile load of joint bonded at $800^{\circ}C$ was proportional to length of bonded layer and tensile load of joint bonded at $900^{\circ}C$ was proportional to minimum width of pattern. The tensile strength of joint was same as base metal.

Experimental Study on Compact type CO2 Gas Cooler(2) - Experiments and Predictions on Heat Flowrate and Pressure Drop - (CO2 가스쿨러용 콤팩트열교환기 개발에 관한 연구(2) - 열유량과 압력강하에 관한 실험 및 예측 -)

  • Oh, Hoo-Kyu;Son, Chang-Hyo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.2
    • /
    • pp.259-266
    • /
    • 2010
  • The heat flowrate and pressure dorp of $CO_2$ in a multi-tube-in-tube helical coil type gas cooler were predicted using LMTD method and compared with the experimental data. The mass flowrate of $CO_2$ and coolant were varied from 0.06 to 0.075 [kg/s], and the cooling pressure of gas cooler were from 8 to 10 [MPa], respectively. The LMTD method is used to predict the heat flowrate and pressure drop of supercritical $CO_2$ during in-tube cooling. The equations used by LMTD method were Gnielinski correlation for $CO_2$ and Dittus-Boelter correlation for coolant, respectively. The equation used to predict the pressure drop of $CO_2$ and coolant is Blasius correlation. In comparison of heat flowrate and pressure drop of $CO_2$ measured by experiment to that predicted by LMTD method, the experimental heat flowrate and pressure drop of $CO_2$ in the multi-tube-in-tube helical coil type gas cooler shows a relatively good agreement with that predicted by LMTD method.

Effect of Heating Rates on Microstructures in Brazing Joints of STS304 Compact Heat Exchanger using MBF 20 (MBF 20으로 브레이징한 STS304 콤팩트 열교환기 접합부의 미세조직에 미치는 가열속도의 영향)

  • Kim, Jun-Tae;Heo, Hoe-jun;Kim, Hyeon-Jun;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.34 no.2
    • /
    • pp.46-53
    • /
    • 2016
  • Effect of heating rate on microstructure of brazed joints with STS 304 Printed Circuit Heat Exchanger (PCHE),which was manufactured as large-scale($1170(L){\times}520(W)){\times}100(T)$, mm), have been studied to compare bonding phenomenon. The specimens using MBF 20 was bonded at $1080^{\circ}C$ for 1hr with $0.38^{\circ}C/min$ and $20^{\circ}C/min$ heating rate, respectively. In case of a heating rate of $20^{\circ}C/min$, overflow of filler metal was observed at the edge of a brazed joints showing the height of filler metal was decreased from $100{\mu}m$ to $68{\mu}m$. At the center of the joints, CrB and high Ni contents of ${\gamma}$-Ni was existed. For the joints brazed at a heating rate of $0.38^{\circ}C/min$, the height of filler was decreased from $100{\mu}m$ to $86{\mu}m$ showing the overflow of filler was not appeared. At the center of the joints, only ${\gamma}$-Ni was detected gradating the Ni contents from center. This phenomenon was driven from a diffusion amount of Boron in filler metal. With a fast heating rate $20^{\circ}C/min$, diffusion amount of B was so small that liquid state of filler metal and base metal were reacted. But, for a slow heating rate $0.38^{\circ}C/min$, solid state of filler metal due to low diffusion amount of B reacted with base metal as a solid diffusion bonding.

Experimental Study on Compact type CO2 Gas Cooler(1) - Heat Flowrate and Pressure Drop in a Multi-Tube-In-Tube Helical Coil Type Gas Cooler - (CO2 가스쿨러용 콤팩트열교환기 개발에 관한 연구(1) -다중관식 헬리컬 코일형 가스냉각기내 CO2의 열유량과 압력강하-)

  • Oh, Hoo-Kyu;Son, Chang-Hyo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.1
    • /
    • pp.30-36
    • /
    • 2010
  • The heat flowrate and pressure drop of $CO_2$ in a multi-tube-in-tube helical coil type gas cooler were investigated experimentally. The mass flowrate of $CO_2$ and coolant were varied from 0.06 to 0.075 [kg/s], respectively and the cooling pressure of gas cooler were from 8 to 10 [MPa]. The heat flowrate of $CO_2$ in the test section is increased with the increase in mass flowrate of coolant, the cooling pressure and mass flowrate of $CO_2$. The pressure drop of $CO_2$ is decreased with the decrease in mass flowrate of coolant and $CO_2$, but decreased with increase in cooling pressure of $CO_2$. The heat flowrate of $CO_2$ in the multi-tube-in-tube helical coil type gas cooler is greatly higher than that of $CO_2$ in the double pipe type gas cooler, while the pressure drop of $CO_2$ in the multi-tube-in-tube helical coil type gas cooler is greatly lower than that of $CO_2$ in the double pipe type gas cooler. Therefore, in case of the application of $CO_2$ at the multi-tube-in-tube helical coil type gas cooler, it is expected to carry out the high-efficiency, high-performance and compactness of gas cooler.