• Title/Summary/Keyword: 콘텐츠 추천 알고리즘

Search Result 71, Processing Time 0.028 seconds

A Collaborative URL Tagging Scheme using Browser Bookmark Categories as Keyword Support for Webpage Sharing (브라우저 북마크 분류를 키워드로 사용하는 웹페이지 공유를 위한 협동적 URL 태깅 방식)

  • Encarnacion, Nico;Yang, Hyun-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.12
    • /
    • pp.1911-1916
    • /
    • 2013
  • One significant challenge that arises in social tagging systems is the rapid increase in the number and diversity of the tags. As opposed to structured annotation systems, tags provide users an unstructured, open-ended mechanism to annotate and organize web-content. In this paper, we propose a scheme for URL recommendation that is based on a folksonomy which is comprised of user-defined tags, URL-keywords and the category folder name as the major element. This scheme will be further improved and implemented on a browser extension that recommends to users the best way to classify a particular URL.

A Study on Intelligent Jobs Information Recommendation Algorithm for a Mobile Environment (모바일 환경을 위한 지능형 일자리 정보 추천 알고리즘에 관한 연구)

  • Jeon, Dong-Pyo;Jeon, Do-Hong
    • Convergence Security Journal
    • /
    • v.8 no.4
    • /
    • pp.167-179
    • /
    • 2008
  • As ubiquitous technology develops, there are many studies to provide various contents proper to users through a mobile device. However, there is a limit of information provision due to a small user interface of a mobile device. This study proposes a system that can solve a problem and provide an intelligent agent model appropriate to a mobile environment and job information positively that an individual user is interested. It is composed of a personalization engine to monitor users' behavior patterns and a learning algorithm to provide information to a mobile device. Analysis shows that preferred job items are different by sex, age and education, while a region affects job searching significantly.

  • PDF

A Study on ICT system development using collective intelligence algorithm. (집단지성을 이용한 ICT 시스템 개발에 관한 연구)

  • Seo, Seong-Won;Kim, Geun-Ho;Kim, Eui-Jeong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.97-99
    • /
    • 2014
  • This study aims to suggest development model for ICT Teaching and Learning System adopting collective intelligence. First, we defined program modules according to functions which multimedia online encyclopedia-type e-textbook should have. Then, we also specified content information creating rules and procedures and content information searching methods. Finally, we developed the prototype which suggests user interface to collect and search information adopting information visualizing techniques. This study has significance in suggesting advanced form of ICT system in which qualified teachers can create, accumulate, and share information and students can explore information and expand search in self-directed manner.

  • PDF

A Dynamical Load Balancing Method for Data Streaming and User Request in WebRTC Environment (WebRTC 환경에 데이터 스트리밍 및 사용자 요청에 따른 동적로드 밸런싱 방법)

  • Ma, Linh Van;Park, Sanghyun;Jang, Jong-hyun;Park, Jaehyung;Kim, Jinsul
    • Journal of Digital Contents Society
    • /
    • v.17 no.6
    • /
    • pp.581-592
    • /
    • 2016
  • WebRTC has quickly grown to be the world's advanced real-time communication in several platforms such as web and mobile. In spite of the advantage, the current technology in WebRTC does not handle a big-streaming efficiently between peers and a large amount request of users on the Signaling server. Therefore, in this paper, we put our work to handle the problem by delivering the flow of data with dynamical load balancing algorithms. We analyze the request source users and direct those streaming requests to a load balancing component. More specifically, the component determines an amount of the requested resource and available resource on the response server, then it delivers streaming data to the requesting user parallel or alternately. To show how the method works, we firstly demonstrate the load-balancing algorithm by using a network simulation tool OPNET, then, we seek to implement the method into an Ubuntu server. In addition, we compare the result of our work and the original implementation of WebRTC, it shows that the method performs efficiently and dynamically than the origin.

Content-based Recommendation Based on Social Network for Personalized News Services (개인화된 뉴스 서비스를 위한 소셜 네트워크 기반의 콘텐츠 추천기법)

  • Hong, Myung-Duk;Oh, Kyeong-Jin;Ga, Myung-Hyun;Jo, Geun-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.3
    • /
    • pp.57-71
    • /
    • 2013
  • Over a billion people in the world generate new news minute by minute. People forecasts some news but most news are from unexpected events such as natural disasters, accidents, crimes. People spend much time to watch a huge amount of news delivered from many media because they want to understand what is happening now, to predict what might happen in the near future, and to share and discuss on the news. People make better daily decisions through watching and obtaining useful information from news they saw. However, it is difficult that people choose news suitable to them and obtain useful information from the news because there are so many news media such as portal sites, broadcasters, and most news articles consist of gossipy news and breaking news. User interest changes over time and many people have no interest in outdated news. From this fact, applying users' recent interest to personalized news service is also required in news service. It means that personalized news service should dynamically manage user profiles. In this paper, a content-based news recommendation system is proposed to provide the personalized news service. For a personalized service, user's personal information is requisitely required. Social network service is used to extract user information for personalization service. The proposed system constructs dynamic user profile based on recent user information of Facebook, which is one of social network services. User information contains personal information, recent articles, and Facebook Page information. Facebook Pages are used for businesses, organizations and brands to share their contents and connect with people. Facebook users can add Facebook Page to specify their interest in the Page. The proposed system uses this Page information to create user profile, and to match user preferences to news topics. However, some Pages are not directly matched to news topic because Page deals with individual objects and do not provide topic information suitable to news. Freebase, which is a large collaborative database of well-known people, places, things, is used to match Page to news topic by using hierarchy information of its objects. By using recent Page information and articles of Facebook users, the proposed systems can own dynamic user profile. The generated user profile is used to measure user preferences on news. To generate news profile, news category predefined by news media is used and keywords of news articles are extracted after analysis of news contents including title, category, and scripts. TF-IDF technique, which reflects how important a word is to a document in a corpus, is used to identify keywords of each news article. For user profile and news profile, same format is used to efficiently measure similarity between user preferences and news. The proposed system calculates all similarity values between user profiles and news profiles. Existing methods of similarity calculation in vector space model do not cover synonym, hypernym and hyponym because they only handle given words in vector space model. The proposed system applies WordNet to similarity calculation to overcome the limitation. Top-N news articles, which have high similarity value for a target user, are recommended to the user. To evaluate the proposed news recommendation system, user profiles are generated using Facebook account with participants consent, and we implement a Web crawler to extract news information from PBS, which is non-profit public broadcasting television network in the United States, and construct news profiles. We compare the performance of the proposed method with that of benchmark algorithms. One is a traditional method based on TF-IDF. Another is 6Sub-Vectors method that divides the points to get keywords into six parts. Experimental results demonstrate that the proposed system provide useful news to users by applying user's social network information and WordNet functions, in terms of prediction error of recommended news.

Clustering Method based on Genre Interest for Cold-Start Problem in Movie Recommendation (영화 추천 시스템의 초기 사용자 문제를 위한 장르 선호 기반의 클러스터링 기법)

  • You, Tithrottanak;Rosli, Ahmad Nurzid;Ha, Inay;Jo, Geun-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.1
    • /
    • pp.57-77
    • /
    • 2013
  • Social media has become one of the most popular media in web and mobile application. In 2011, social networks and blogs are still the top destination of online users, according to a study from Nielsen Company. In their studies, nearly 4 in 5active users visit social network and blog. Social Networks and Blogs sites rule Americans' Internet time, accounting to 23 percent of time spent online. Facebook is the main social network that the U.S internet users spend time more than the other social network services such as Yahoo, Google, AOL Media Network, Twitter, Linked In and so on. In recent trend, most of the companies promote their products in the Facebook by creating the "Facebook Page" that refers to specific product. The "Like" option allows user to subscribed and received updates their interested on from the page. The film makers which produce a lot of films around the world also take part to market and promote their films by exploiting the advantages of using the "Facebook Page". In addition, a great number of streaming service providers allows users to subscribe their service to watch and enjoy movies and TV program. They can instantly watch movies and TV program over the internet to PCs, Macs and TVs. Netflix alone as the world's leading subscription service have more than 30 million streaming members in the United States, Latin America, the United Kingdom and the Nordics. As the matter of facts, a million of movies and TV program with different of genres are offered to the subscriber. In contrast, users need spend a lot time to find the right movies which are related to their interest genre. Recent years there are many researchers who have been propose a method to improve prediction the rating or preference that would give the most related items such as books, music or movies to the garget user or the group of users that have the same interest in the particular items. One of the most popular methods to build recommendation system is traditional Collaborative Filtering (CF). The method compute the similarity of the target user and other users, which then are cluster in the same interest on items according which items that users have been rated. The method then predicts other items from the same group of users to recommend to a group of users. Moreover, There are many items that need to study for suggesting to users such as books, music, movies, news, videos and so on. However, in this paper we only focus on movie as item to recommend to users. In addition, there are many challenges for CF task. Firstly, the "sparsity problem"; it occurs when user information preference is not enough. The recommendation accuracies result is lower compared to the neighbor who composed with a large amount of ratings. The second problem is "cold-start problem"; it occurs whenever new users or items are added into the system, which each has norating or a few rating. For instance, no personalized predictions can be made for a new user without any ratings on the record. In this research we propose a clustering method according to the users' genre interest extracted from social network service (SNS) and user's movies rating information system to solve the "cold-start problem." Our proposed method will clusters the target user together with the other users by combining the user genre interest and the rating information. It is important to realize a huge amount of interesting and useful user's information from Facebook Graph, we can extract information from the "Facebook Page" which "Like" by them. Moreover, we use the Internet Movie Database(IMDb) as the main dataset. The IMDbis online databases that consist of a large amount of information related to movies, TV programs and including actors. This dataset not only used to provide movie information in our Movie Rating Systems, but also as resources to provide movie genre information which extracted from the "Facebook Page". Formerly, the user must login with their Facebook account to login to the Movie Rating System, at the same time our system will collect the genre interest from the "Facebook Page". We conduct many experiments with other methods to see how our method performs and we also compare to the other methods. First, we compared our proposed method in the case of the normal recommendation to see how our system improves the recommendation result. Then we experiment method in case of cold-start problem. Our experiment show that our method is outperform than the other methods. In these two cases of our experimentation, we see that our proposed method produces better result in case both cases.

A Study on Human-friendly Path Decision using Fuzzy Logic (퍼지 로직을 이용한 인간 친화적인 경로 설정에 관한 연구)

  • Choi, Woo-Kyung;Kim, Seong-Joo;Jeon, Hong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.5
    • /
    • pp.616-621
    • /
    • 2006
  • Recently many cars are equipping a navigation system. The main purpose of the early system guides a user through the route. A navigation system includes various abilities by development of various technologies and it has given more convenience to user. It can play various records on the tape and announces which are useful information about each road. Also it can use various multi-media contents by DMB device during driving. However, guide function of basic and important road in the navigation system has not grown greatly yet. In this paper, we proposed recommendation method of human-friendly road considering user's condition through various information of outside environment, user's velocity intention, a driver's emotion and a preference of the road. Modules consists of hierarchical structure that can easily correct and add each algorithm and those use fuzzy logic algorithm.

An Empirical Study of Personalized Thumbnail Curation of Netflix (개인화된 썸네일 큐레이션 사용성 평가 -넷플릭스 사례를 통한 UX study-)

  • Park, Siwon;Park, Jisu;Kang, Jisu;Rhee, Boa
    • Journal of Digital Convergence
    • /
    • v.19 no.10
    • /
    • pp.265-274
    • /
    • 2021
  • This study empirically analyzed the users' experiences with the Netflix thumbnail curation based on the Technology Acceptance Model(TAM). According to the correlation analysis results, the higher the dependence on the thumbnails, the higher the satisfaction with the thumbnail curation. Both Perceived Informational Usefulness(PIU) and Perceived Ease of Use(PEOU) had correlations with the degree of satisfaction with the thumbnail curation. In particular, the factors of relevance in PEOU had the greatest impact on the degree of satisfaction and this result proved that the suitability factors of the thumbnails had significant correlations with the degree of satisfaction. The degree of satisfaction with the thumbnail curation also positively correlated with Netflix's overall degree of satisfaction and behavioral intention to use the Netflix. This study demonstrated the suitability of the TAM as a UX evaluation tool for the Netflix thumbnail curation.

Book Genre Visualization based on Genre Identification Algorithm (장르 판별 알고리즘을 이용한 책 장르 시각화)

  • Kim, Hyo-Young;Park, Jin-Wan
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.5
    • /
    • pp.52-61
    • /
    • 2012
  • Text visualization is one of sectors in data visualization. This study is on methods to visually represent text's contents, structure, and form aspects based on various analytic techniques about wide range of text data. In this study -as a text visualization study-, 1) a method to find out the characteristics of a book's genre using words in the text of the book was looked into, 2) elements of visualization of a book's genre based on verification through an experiment were drew, and 3) the ways to intuitionally and efficiently visualize this were explained. According to visualization suggested by this study, first, actual genre of a book can be understood based on words used in the book. Second, with which genre is closed to the book can be found out with one glance through images of visualization. Moreover, the characteristics of complicated genres included in a book can be understood. Furthermore, the level of closeness (similarity) of a genre -which is found to be a representative genre using the number of dots, curvature of a curve, and brightness in the image- can be assumed. Finally, the outcome of this study can be used for a variety of fields including book customizing service such as a book recommendation system that provides images of personal preference books or genres through application of books favored by individual customers.

A Study on Customer Review Rating Recommendation and Prediction through Online Promotional Activity Analysis - Focusing on "S" Company Wearable Products - (온라인 판매촉진활동 분석을 통한 고객 리뷰평점 추천 및 예측에 관한 연구 : S사 Wearable 상품중심으로)

  • Shin, Ho-cheol
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.4
    • /
    • pp.118-129
    • /
    • 2022
  • The purpose of this report is to study a strategic model of promotion activities through various analysis and sales forecasting by selecting wearable products for domestic online companies and collecting sales data. For data analysis, various algorithms are used for analysis and the results are selected as the optimal model. The gradation boosting model, which is selected as the best result, will allow nine independent variables to be entered, including promotion type, price, amount, gender, model, company, grade, sales date, and region, when predicting dependent variables through supervised learning. In this study, the review values set as dependent variables for each type of sales promotion were studied in more detail through the ensemble analysis technique, and the main purpose is to analyze and predict them. The purpose of this study is to study the grades. As a result of the analysis, the evaluation result is 95% of AUC, and F1 is about 93%. In the end, it was confirmed that among the types of sales promotion activities, value-added benefits affected the number of reviews and review grades, and that major variables affected the review and review grades.