• Title/Summary/Keyword: 콘텐츠 추천 알고리즘

Search Result 71, Processing Time 0.028 seconds

The Blog Ranking Algorithm Reflecting Trend Index (트렌드 지수를 반영한 블로그 랭킹 알고리즘)

  • Lee, Yong-Suk;Kim, Hyoung Joong
    • Journal of Digital Contents Society
    • /
    • v.18 no.3
    • /
    • pp.551-558
    • /
    • 2017
  • The growth of blogs has two aspect of providing various information and marketing. This study collected the rankings of blog posts of large portal using OpenAPI and investigated the features of blogs ranked through the exploratory data analysis technique. As a result of the analysis, it was found that the influence of the blogger and the recent creation date of the post were highly influential factors in the top rank. Due to the weakness of these evaluation algorithms, there was a problem of showing the search results which is concentrated to the power blogger's post. In this study, we propose an algorithm that improves the reliability of content by adding the reliability DB information which is verified by the experts and reflects the fairness of the application of the ranking score through the trend index indicating various public interests. Improved algorithms have made it possible to provide more reliable information in the search results of the relevant field and have an effect of making it difficult to manipulate ranking by illegal applications that increase the number of visitors.

An Integrated Perspective of User Evaluating Personalized Recommender Systems : Performance-Driven or User-Centric (개인화 추천시스템의 사용자 평가에 대한 통합적 접근 : 시스템 성과와 사용자 태도를 기반으로)

  • Choi, Jae-Won;Lee, Hong-Joo
    • The Journal of Society for e-Business Studies
    • /
    • v.17 no.3
    • /
    • pp.85-103
    • /
    • 2012
  • This study focused on user evaluation for personalized recommender systems with the integrated view of performance of the system and user attitude of recommender systems. Since users' evaluations of recommender systems can be affected by recommendation outcomes and presentation methods, both system performances based on outcomes and user attitudes formed by the presentation methods should be considered when explaining users' evaluations. However, an integrated view of system performance and user attitudes has not been applied to explain users' evaluation of recommender systems. Thus, the goal of this study is to explain users' evaluations of recommender systems under the integrated view of predictive features and explanation features at the same time. Our findings suggest that social presence, both accuracy and noveltyhave impacts onuser satisfaction for recommender systems. Especially, predictive features including accuracy and novelty affected user satisfaction. Novelty as well as accuracy is one of the significant factors for user satisfaction while recommender systems provided usual items users have experienced when systems provide serendipitous items. Likewise, explanation features with social presence and self-reference were important for user evaluation of personalized recommender systems. For explanation features, while social presence appears as one of important factors to user satisfaction of evaluating personalized recommendations, self-reference has no significant effect on user's satisfaction for recommender systems when compared to the result of social presence. Self-referencing messages did not affect user satisfaction but the levels of self-referencing are different between low and high groups in the experiment.

Design of Fourth Generation Knowledge Management System based on Social Network Service (소셜 네트워크 서비스 기반의 4세대 지식관리시스템 설계 방안)

  • Ahn, Gilseung;Kwon, Minsung;Kang, Changwook;Hur, Sun
    • Journal of KIISE
    • /
    • v.43 no.5
    • /
    • pp.579-589
    • /
    • 2016
  • Currently, corporations have introduced the knowledge management system that utilizes knowledge effectively for practical purpose and development of core ability. However, existing knowledge systems have failed to share the knowledge content due to lack of elements that encourage the members to participate in the system. In this study, we designed a novel knowledge management system that employs the structure of social network service (SNS). More precisely, screen layout according to function and several algorithms to improve user friendliness and produce integrated knowledge content are recommended. The proposed SNS-based knowledge management system encourages the enterprise members to participate in the system to produce and share valuable knowledge contents.

Improvement of Cognitive Rehabilitation Method using K-means Algorithm (K-MEANS 알고리즘을 이용한 인지 재활 훈련 방법의 개선)

  • Cho, Ha-Yeon;Lee, Hyeok-Min;Moon, Ho-Sang;Shin, Sung-Wook;Chung, Sung-Taek
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.6
    • /
    • pp.259-268
    • /
    • 2018
  • The purpose of this study is to propose a training method customized to the level of cognitive abilities to increase users' interest and engagement while using cognitive function training contents. The level of cognitive ability of the users was based on the clustering based on the users' information and Mini-Mental Statue Examination-Korea Child test score using the K-means algorithm applied collaborative filtering. The results were applied to the integrated cognitive function training system, and the contents order and difficulty level of the cognitive function training area were recommended to the user's cognitive ability level. Particularly, the contents difficulty control was designed to give a high immersion feeling by applying the 'flow theory' method that users can repeatedly feel tension and comfort. In conclusion, the user-customized cognitive function training method proposed in this paper can be expected to be more effective and rehabilitative results than existing therapists' subjective setting of contents order and difficulty level.

Recommendation System Development of Indirect Advertising Product through Summary Analysis of Character Web Drama (캐릭터 웹드라마 요약 분석을 통한 간접광고 제품 추천 시스템 개발)

  • Hyun-Soo Lee;Jung-Yi Kim
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.6
    • /
    • pp.15-20
    • /
    • 2023
  • This paper is a study on the development of an artificial intelligence (AI) system algorithm that recommends indirect advertising products suitable for character web dramas. The goal of this study is to increase viewers' content immersion and help them understand the story of the drama more deeply by recommending indirect advertising products that are suitable for writing lines for web dramas. In this study, we analyze dialogue and plot using the natural language processing model GPT, and develop two types of indirect advertising product recommendation systems, including prop type and background type, based on the analysis results. Through this, products that fit the story of the web drama are appropriately placed, allowing indirect advertisements to be exposed naturally, thereby increasing viewer immersion and enhancing the effectiveness of product promotion. There are limitations of artificial intelligence models, such as the difficulty in fully understanding hidden meanings or cultural nuances, and the difficulty in securing sufficient data for learning. However, this study will provide new insights into how AI can contribute to the production of creative works, and will be an important stepping stone to expand the possibilities of using natural language processing models in the creative industry.

Apparel Coordination based on Human Sensibility Ergonomics using Preference of Female Students (여학생의 선호도를 이용한 감성공학적 의상 코디)

  • Cho, Dong-Ju;Han, Kyung-Su;Hwang, Kyung-Hee;Chung, Kyung-Young;Lee, Jung-Hyun
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2007.11a
    • /
    • pp.146-150
    • /
    • 2007
  • As the internet has become a mainstream information tool, searching answers has become crucial as well. The collaborative filtering estimates and recommends items based upon the similar preference. However, because it refers to partial users information who have the similar preference, it tends to ignore the rest. In this paper, we propose the apparel coordination based on human sensibility ergonomics using the female students preference. This proposed method calculates evaluation values using fitness function based genetic algorithm, and gathers users through a-cut. Finally, the collaborative filtering recommends apparel coordination. To estimate the performance, the suggested method is compared with FAIMS-I, FAIMS-II in the questionnaire dataset.

  • PDF

Analysis of the Stock Market Network for Portfolio Recommendation (주식 포트폴리오 추천을 위한 주식 시장 네트워크 분석)

  • Lee, Yun-Jung;Woo, Gyun
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.11
    • /
    • pp.48-58
    • /
    • 2013
  • The stock market is constantly changing and sometimes a slump or a sudden rising in stocks happens without any special reason. So the stock market is recognized as a complex system and it is hard to predict the change on stock prices. In this paper we consider the stock market to a network consisting of stocks. We analyzed the dynamics of the Korean stock market network and evaluated the changing of the correlation between shares consisting of the time series data of 137 companies belong to KOSPI200. Our analysis shows that the stock prices tend to plummet when the correlation between stocks is very high. We propose a method for recommending the stock portfolio based on the analysis of the stock market network. To show the effectiveness of the recommended portfolio, we conducted the simulated stock investment and compared the recommended portfolio with the efficient portfolio proposed Markowitz. According to the experiment results, the rate of return of the portfolio is about 10.6% which is about 3.7% and 5.6% higher than the average rate of return of the efficient portfolio and KOSPI200 respectively.

Data-Driven Approach to Identify Research Topics for Science and Technology Diplomacy (과학외교를 위한 데이터기반의 연구주제선정 방법)

  • Yeo, Woon-Dong;Kim, Seonho;Lee, BangRae;Noh, Kyung-Ran
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.11
    • /
    • pp.216-227
    • /
    • 2020
  • In science and technology diplomacy, major countries actively utilize their capabilities in science and technology for public diplomacy, especially for promoting diplomatic relations with politically sensitive regions and countries. Recently, with an increase in the influence of science and technology on national development, interest in science and technology diplomacy has increased. So far, science and technology diplomacy has relied on experts to find research topics that are of common interest to both the countries. However, this method has various problems such as the bias arising from the subjective judgment of experts, the attribution of the halo effect to famous researchers, and the use of different criteria for different experts. This paper presents an objective data-based approach to identify and recommend research topics to support science and technology diplomacy without relying on the expert-based approach. The proposed approach is based on big data analysis that uses deep-learning techniques and bibliometric methods. The Scopus database is used to find proper topics for collaborative research between two countries. This approach has been used to support science and technology diplomacy between Korea and Hungary and has raised expectations of policy makers. This paper finally discusses aspects that should be focused on to improve the system in the future.

Building Hierarchical Knowledge Base of Research Interests and Learning Topics for Social Computing Support (소셜 컴퓨팅을 위한 연구·학습 주제의 계층적 지식기반 구축)

  • Kim, Seonho;Kim, Kang-Hoe;Yeo, Woondong
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.12
    • /
    • pp.489-498
    • /
    • 2012
  • This paper consists of two parts: In the first part, we describe our work to build hierarchical knowledge base of digital library patron's research interests and learning topics in various scholarly areas through analyzing well classified Electronic Theses and Dissertations (ETDs) of NDLTD Union catalog. Journal articles from ACM Transactions and conference web sites of computing areas also are added in the analysis to specialize computing fields. This hierarchical knowledge base would be a useful tool for many social computing and information service applications, such as personalization, recommender system, text mining, technology opportunity mining, information visualization, and so on. In the second part, we compare four grouping algorithms to select best one for our data mining researches by testing each one with the hierarchical knowledge base we described in the first part. From these two studies, we intent to show traditional verification methods for social community miming researches, based on interviewing and answering questionnaires, which are expensive, slow, and privacy threatening, can be replaced with systematic, consistent, fast, and privacy protecting methods by using our suggested hierarchical knowledge base.

Efficient Association Rule Mining based SON Algorithm for a Bigdata Platform (빅데이터 플랫폼을 위한 SON알고리즘 기반의 효과적인 연관 룰 마이닝)

  • Nguyen, Giang-Truong;Nguyen, Van-Quyet;Nguyen, Sinh-Ngoc;Kim, Kyungbaek
    • Journal of Digital Contents Society
    • /
    • v.18 no.8
    • /
    • pp.1593-1601
    • /
    • 2017
  • In a big data platform, association rule mining applications could bring some benefits. For instance, in a agricultural big data platform, the association rule mining application could recommend specific products for farmers to grow, which could increase income. The key process of the association rule mining is the frequent itemsets mining, which finds sets of products accompanying together frequently. Former researches about this issue, e.g. Apriori, are not satisfying enough because huge possible sets can cause memory to be overloaded. In order to deal with it, SON algorithm has been proposed, which divides the considered set into many smaller ones and handles them sequently. But in a single machine, SON algorithm cause heavy time consuming. In this paper, we present a method to find association rules in our Hadoop based big data platform, by parallelling SON algorithm. The entire process of association rule mining including pre-processing, SON algorithm based frequent itemset mining, and association rule finding is implemented on Hadoop based big data platform. Through the experiment with real dataset, it is conformed that the proposed method outperforms a brute force method.