• 제목/요약/키워드: 콘텐츠 추천 알고리즘

검색결과 71건 처리시간 0.024초

과학 학술정보 서비스 플랫폼에서 개인화를 적용한 콘텐츠 추천 알고리즘 최적화를 통한 추천 결과의 성능 평가 (Performance Evaluation of Recommendation Results through Optimization on Content Recommendation Algorithm Applying Personalization in Scientific Information Service Platform)

  • 박성은;황윤영;윤정선
    • 한국콘텐츠학회논문지
    • /
    • 제17권11호
    • /
    • pp.183-191
    • /
    • 2017
  • 본 연구는 과학 학술정보 서비스 플랫폼 이용자의 정보 검색 편의성을 확보하고 적합한 정보의 획득에 소요되는 시간을 절약하기 위하여, 운영 중인 서비스 메뉴와 각 서비스 별 콘텐츠 정보를 제공하는 알고리즘 중 콘텐츠 추천 알고리즘을 최적화하고 그 결과를 비교평가 하는 것이다. 추천 정확도를 높이기 위해 이용자의 '전공' 항목을 기존 알고리즘에 추가하였으며, 기존 알고리즘과 최적화된 알고리즘을 통한 추천 결과의 성능평가를 수행하였다. 성능평가 결과 최적화된 알고리즘을 통해 이용자에게 제공되는 콘텐츠의 적합도가 21.2% 증가함을 파악하였다. 이용자에게 적합한 콘텐츠를 시스템에서 자동 도출하여 각 서비스 메뉴 별로 제공함으로써 정보 획득 시간을 단축하고, 연구정보로서 가치 있는 연구결과물의 생명주기를 연장할 수 있는 방안이라는 데 본 연구의 의의가 있다.

콘텐츠 추천 시스템의 객관적 성능평가 지원을 위한 정확도 평가 시스템 설계 및 구현 (Design and Implementation of the Evaluation System for the User-based Contents Recommendation Systems)

  • 김다희;신사임;박성주
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2012년도 하계학술대회
    • /
    • pp.343-346
    • /
    • 2012
  • 추천 엔진의 지속적인 성능 향상을 위해서는 객관적 성능 평가가 이루어져야 하지만, 콘텐츠 추천 기술은 평가 데이터 구축이 어렵고 평가를 위한 심도 깊은 연구가 이루어지지 못하여 많은 어려움을 가지고 있다. 본 논문은 콘텐츠 추천 시스템의 객관적인 평가를 시스템 구축에 대한 연구이다. 추천 알고리즘의 효율적이고 객관적인 성능 평가를 위하여 기존 연구들을 분석하여 대표적인 성능평가 양식들을 구현하였다. 통계적인 평가를 위한 사용자 데이터를 수집하였으며 데이터 크기, 평가방식, 추천 알고리즘의 모듈 별 성능 추이를 쉽게 변경하고 관찰할 수 있도록 인터페이스를 설계하였다. 이러한 평가 시스템의 도입으로 콘텐츠 추천 알고리즘의 지속적인 성능 보완을 기대 할 수 있을 것이다.

  • PDF

생활 스포츠 콘텐츠 기반의 프로파일 처리 알고리즘 연구 (A Study on Profile Processing Algorithm based on Sport for All Contents)

  • 고은미;안나영;이재동;이원진
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2016년도 추계학술대회
    • /
    • pp.302-304
    • /
    • 2016
  • 본 논문에서는 생활 스포츠 콘텐츠 기반의 프로파일 처리 알고리즘에 대하여 제안한다. 제안한 알고리즘은 맞춤형 생활 스포츠 콘텐츠를 추천을 위해 필요한 연구이며, 추천의 신뢰성을 높이기 위해 선행되어야 할 연구이다. 그래서 제안한 알고리즘은 추천 시 고려되는 동적 정보를 포함하는 동적 프로파일을 처리하고, 추천 분류에 따라 변화되는 가중치 값을 처리할 수 있는 동적 프로파일 알고리즘을 제안하였다. 제안한 프로파일 처리 알고리즘은 콘텐츠 추천의 만족도 향상을 기대한다.

  • PDF

사용자 맞춤형 건강 콘텐츠 추천 알고리즘에 대한 연구 (A Study on Personalized Health Care Contents Recommendation Algorithm)

  • 이하늘;이하영;한아연;신문선
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2017년도 제56차 하계학술대회논문집 25권2호
    • /
    • pp.360-361
    • /
    • 2017
  • 본 논문에서는 웹 또는 앱을 통해 제공되는 무한한 정보 중에서 사용자들에게 필요한 건강 관련 정보를 맞춤형으로 제공하기 위해서 사용자 맞춤형 건강 콘텐츠 추천 알고리즘을 설계한다. 그리하여 집단 지성 알고리즘과 의사 결정 나무를 활용하여 사용자 맞춤형 건강 콘텐츠 추천 서비스를 이용하는 사용자들의 자가건강진단 정보를 활용하여 웹상의 URL 정보를 토대로 맞춤형 정보를 분석, 추천하는 알고리즘의 유용성을 제시한다.

  • PDF

모바일 환경에서의 효율적인 멀티미디어 콘텐츠 추천시스템 구조 (Efficient Multimedia Contents Recommendation System in Mobile Environment)

  • 홍종규;박성준;김영국
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2006년도 가을 학술발표논문집 Vol.33 No.2 (D)
    • /
    • pp.385-390
    • /
    • 2006
  • 모바일 환경이 언제, 어디서든지 원하는 서비스나 콘텐츠에 접근할 수 있다는 장점에도 불구하고, 모바일 단말기는 여러 가지 취약한 단점들을 가지고 있다. DMB, 인터넷, 모바일 등에 대한 콘텐츠 또는 정보의 양이 거대하게 증가하면서 사용자는 때때로 자신이 원하는 콘텐츠를 찾는데 어려움을 겪게 되며, 많은 시간을 소비하게 된다. 발전하는 모바일 환경 및 단말기의 장점을 최대한 이용할 뿐만 아니라 모바일 단말기가 가지는 제약 사항들의 한계를 극복하여 사용자가 원하는 정보 및 콘텐츠를 언제 어디서나 빠른 시간에 이용할 수 있는 모바일 환경에 적합한 추천시스템의 필요성은 증가하고 있다. 본 논문에서는 기존의 서버 중심의 추천시스템을 개선하여 클라이언트와 서버간의 데이터 교환을 통하여 추천 정확도를 높일 수 있는 추천시스템 구조를 제안한다. 제안하는 시스템은 사용자의 히스토리를 이용하며, 클라이언트에서는 모바일 단말기 사용자만의 히스토리를 이용한 추천 알고리즘을 적용하였고, 서버에서는 협업 필터링을 통해 다른 사용자의 히스토리를 이용한 추천 알고리즘을 적용하였다. 실험 결과는 서버 중심의 추천시스템 보다 더 높은 정확도를 제공할 수 있다는 것을 보여준다.

  • PDF

사용자 선호도를 사용한 군집 기반 추천 시스템 (Clustering-Based Recommendation Using Users' Preference)

  • 김영현;신원용
    • 한국정보통신학회논문지
    • /
    • 제21권2호
    • /
    • pp.277-284
    • /
    • 2017
  • 사용자가 좋아할만한 콘텐츠를 정확하게 추천하는 것은 추천 시스템에서 매우 중요한 요소 중 하나이다. 원치 않는 콘텐츠를 추천하거나, 원하는 것을 추천하지 않는 것은 사용자 만족도 측면에서 안 좋은 영향을 끼친다. 본 연구에서는 콘텐츠의 정확한 추천을 위해 사용자 군집 기반 추천 시스템을 제안한다. 제안하는 알고리즘에서 사용자들의 실제 선호도 점수와 피어슨 상관 계수를 기반으로 사용자들을 여러 군집으로 나눈다. 이 후, 특정 사용자에게 어떤 콘텐츠의 추천 여부 결정은, 같은 군집 내에 있는 다른 사용자들의 해당 콘텐츠의 실제 선호도 점수를 근거로 정한다. 제안하는 알고리즘은 군집화를 사용하지 않는 아이템 기반 협력 필터링 알고리즘보다 정밀도, 재현율, F1 스코어와 같은 추천 정확도에 있어서 의미 있는 성능 향상을 보인다.

대용량 음악콘텐츠 환경에서의 데이터마이닝 기법을 활용한 추천시스템에 관한 연구 (A Study on Recommendation System Using Data Mining Techniques for Large-sized Music Contents)

  • 김용;문성빈
    • 정보관리학회지
    • /
    • 제24권2호
    • /
    • pp.89-104
    • /
    • 2007
  • 본 연구는 대용량 음악콘텐츠환경에서 개인화 추천 서비스를 위한 기반구조의 제공을 위하여 시도되었다. 추천서비스를 위한 기존의 많은 연구와 상용프로그램에도 불구하고 대규모의 쇼핑몰들은 개인화 추천서비스와 실시간으로 대용량의 데이터를 처리할 수 있는 추천시스템을 필요로 하고 있다. 이를 위하여 본 연구에서는 데이터마이닝 기술과 새로운 패턴매칭 알고리즘을 제안하고 있다. 콘텐츠 주제분야에 대한 이용자의 선호도를 이용한 이용자 분할을 위하여 군집화 기법이 사용되었다. 다음으로는 군집화를 통하여 생성된 분할된 이용자 그룹에서 개별 이용자의 콘텐츠에 대한 접근 패턴의 추출을 위하여 순차패턴 마이닝기법을 적용하였다. 최종적으로 각각의 이용자 군집의 콘텐츠 접근 패턴과 콘텐츠 선호도에 기반한 제안된 추천 알고리즘에 의해 추천이 이루어진다. 이러한 추천을 위하여 기반 구조와 함께, 전처리과정과 원본 데이터의 형식변환이 데이터베이스에서 수행되어진다. 본 연구에서 제안하고 있는 기반구조의 적절성을 보여주기 위하여 제안된 시스템을 구현하였다. 실제 이용자에 의해 이용된 데이터를 실험에 적용하였으며, 해당 실험에서 추천은 실시간으로 이루어졌으며 추천결과에 있어서는 적절한 정확성을 보여주고 있다.

연령 및 프로그램 줄거리를 활용한 콘텐츠 기반 TV 프로그램 추천 시스템 (A Content-based TV Program Recommendation System Using Age and Plots)

  • 방한별;이혜우;이지형
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2015년도 제51차 동계학술대회논문집 23권1호
    • /
    • pp.51-54
    • /
    • 2015
  • 추천 시스템의 대표적인 연구 중 하나인 콘텐츠 기반 추천 시스템 연구는 TV 프로그램이나 영화의 줄거리, 장르, 리뷰 등의 콘텐츠의 메타데이터를 이용한다. 그러나 이러한 연구들은 콘텐츠 관련 정보에만 의존할 뿐, 시청자의 프로파일과 콘텐츠의 정보를 함께 고려하지 않는다. 본 논문에서는 시청자의 프로파일 중 연령과 콘텐츠의 정보인 프로그램의 줄거리를 활용한 TV 프로그램 추천 시스템을 제안한다. 본 추천 시스템은 시청자를 연령에 따라 분류한 후, LDA 알고리즘을 이용하여 시청자의 시청 TV 프로그램의 줄거리를 분류된 나이에 따라 각각의 줄거리 토픽 모델로 생성한다. 이를 기준으로 시청자가 원하는 시간대에 방송되는 프로그램들의 줄거리 토픽벡터와 시청자의 선호도 토픽벡터의 유사도를 비교해 가장 유사도가 높은 TV 프로그램을 시청자에게 추천하는 방식이다. 본 논문에서는 연구의 효용성을 검증하기 위해 줄거리만을 사용한 경우와 줄거리와 연령을 동시에 활용한 경우를 비교 실험하였다. 실험을 통해 프로그램의 줄거리만을 사용한 경우보다 연령을 동시에 활용한 경우의 추천 시스템 성능이 개선된 것을 확인할 수 있었다.

  • PDF

유튜브의 개인화 알고리즘이 유도하는 적극이용 경로에 대한 실증분석 (An Empirical Analysis of the Active Use Paths induced by YouTube's Personalization Algorithm)

  • 배승주
    • 한국산업정보학회논문지
    • /
    • 제28권2호
    • /
    • pp.31-45
    • /
    • 2023
  • 본 연구는 유튜브 이용자의 사용 시간이 양적으로 증대하면서 나타나는 질적 단계와 경로에 주목하였다. 그리고 심리학과 신경과학의 이론을 적용하여 추천시스템의 개인화 알고리즘과 적극이용의 구간을 세분화하였고, 이론연구와 실증연구를 병행하였다. 이론연구에서 심리학과 신경과학의 관점으로 포그의 행동모델(FBM), 가변적 보상, 도파민 중독을 적용하였다. 포그의 행동모델(FBM)은 연관 콘텐츠 제시 기능인 개인화 추천 알고리즘이 트리거(계기)로서 쉬운 클릭을 유발하고, 가변적 보상은 검색하는 콘텐츠에 대한 예측불가능성으로 동기부여의 효과성을 높이며, 도파민 중독은 도파민 신경을 자극하면 지속적 적극적으로 콘텐츠를 소비하게 하는 것으로 요약된다. 본 연구는 개인화 추천 알고리즘과 적극이용 구간에서 콘텐츠의 이용 목적을 심리적 측면에서 처음이용, 재이용, 지속이용, 적극이용의 4단계로 구분하고, 경로를 분석하였다는 점에서 학문적 실무적 기여를 할 것으로 기대한다.

크라우드 소싱 기반의 유튜브 채널 추천 플랫폼 개발 연구 (A Study on the Development of Youtube Channel Recommendation Platform Based on Crowd Sourcing)

  • 림빈;임영환;심근정;이요셉
    • 문화기술의 융합
    • /
    • 제7권3호
    • /
    • pp.523-528
    • /
    • 2021
  • 현재의 유튜브는 사용자가 실제 소비한 콘텐츠를 기반으로 사용자에게 유사한 콘텐츠를 추천한다. 이런 알고리즘의 특성으로 인하여 사용자는 비슷한 분야의 콘텐츠는 잘 추천받지만 소비 한적이 없는 분야의 콘텐츠는 추천 받기가 어렵다. 폭넓게 영상을 추천 받는데 있어서 한계가 있다. 크라우드 소싱을 활용하여 이 문제를 해결하고자 한다. 유튜브를 사용하는 대중들의 직접적인 참여를 통하여 다양한 채널을 추천받을 수 있는 플랫폼을 제안한다. 사용자는 다양한 채널을 추천받고 채널 토론 방에서 사람들과 소통할 수 있으며 동시에 채널을 추천하여 수익을 창출할 수 있다. 본 플랫폼이 다양한 크라우드 소싱 기반의 추천 플랫폼에서 활용될 수 있기를 기대한다.