• Title/Summary/Keyword: 콘텐츠 추천 알고리즘

Search Result 71, Processing Time 0.025 seconds

Performance Evaluation of Recommendation Results through Optimization on Content Recommendation Algorithm Applying Personalization in Scientific Information Service Platform (과학 학술정보 서비스 플랫폼에서 개인화를 적용한 콘텐츠 추천 알고리즘 최적화를 통한 추천 결과의 성능 평가)

  • Park, Seong-Eun;Hwang, Yun-Young;Yoon, Jungsun
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.11
    • /
    • pp.183-191
    • /
    • 2017
  • In order to secure the convenience of information retrieval by users of scientific information service platforms and to reduce the time required to acquire the proper information, this study proposes an optimized content recommendation algorithm among the algorithms that currently provide service menus and content information for each service, and conducts comparative evaluation on the results. To enhance the recommendation accuracy, users' major items were added to the original algorithm, and performance evaluations on the recommendation results from the original and optimized algorithms were performed. As a result of this evaluation, we found that the relevance of the content provided to the users through the optimized algorithm was increased by 21.2%. This study proposes a method to shorten the information acquisition time and extend the life cycle of the results as valuable information by automatically computing and providing content suitable for users in the system for each service menu.

Design and Implementation of the Evaluation System for the User-based Contents Recommendation Systems (콘텐츠 추천 시스템의 객관적 성능평가 지원을 위한 정확도 평가 시스템 설계 및 구현)

  • Kim, Da-Hee;Shin, Sa-Im;Park, Sung-Joo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2012.07a
    • /
    • pp.343-346
    • /
    • 2012
  • 추천 엔진의 지속적인 성능 향상을 위해서는 객관적 성능 평가가 이루어져야 하지만, 콘텐츠 추천 기술은 평가 데이터 구축이 어렵고 평가를 위한 심도 깊은 연구가 이루어지지 못하여 많은 어려움을 가지고 있다. 본 논문은 콘텐츠 추천 시스템의 객관적인 평가를 시스템 구축에 대한 연구이다. 추천 알고리즘의 효율적이고 객관적인 성능 평가를 위하여 기존 연구들을 분석하여 대표적인 성능평가 양식들을 구현하였다. 통계적인 평가를 위한 사용자 데이터를 수집하였으며 데이터 크기, 평가방식, 추천 알고리즘의 모듈 별 성능 추이를 쉽게 변경하고 관찰할 수 있도록 인터페이스를 설계하였다. 이러한 평가 시스템의 도입으로 콘텐츠 추천 알고리즘의 지속적인 성능 보완을 기대 할 수 있을 것이다.

  • PDF

A Study on Profile Processing Algorithm based on Sport for All Contents (생활 스포츠 콘텐츠 기반의 프로파일 처리 알고리즘 연구)

  • Ko, Eun-mi;An, Na-Young;Lee, Jae-Dong;Lee, Won-Jin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.302-304
    • /
    • 2016
  • In this paper, we propose the profile processing algorithm based on in-life sports contents. The proposed algorithm is required research for recommending to sport for all contents, and is preceding research to improve reliability of recommendation. So the proposed algorithm processing dynamic profile based on dynamic information for recommendation, and processing weight values that depending on dynamic recommendation classification. The proposed profile processing algorithm is expected to improve satisfaction of contents recommendation.

  • PDF

A Study on Personalized Health Care Contents Recommendation Algorithm (사용자 맞춤형 건강 콘텐츠 추천 알고리즘에 대한 연구)

  • Lee, Hanuel;Lee, Hayoung;Han, Ayeon;Sin, Moonsun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2017.07a
    • /
    • pp.360-361
    • /
    • 2017
  • 본 논문에서는 웹 또는 앱을 통해 제공되는 무한한 정보 중에서 사용자들에게 필요한 건강 관련 정보를 맞춤형으로 제공하기 위해서 사용자 맞춤형 건강 콘텐츠 추천 알고리즘을 설계한다. 그리하여 집단 지성 알고리즘과 의사 결정 나무를 활용하여 사용자 맞춤형 건강 콘텐츠 추천 서비스를 이용하는 사용자들의 자가건강진단 정보를 활용하여 웹상의 URL 정보를 토대로 맞춤형 정보를 분석, 추천하는 알고리즘의 유용성을 제시한다.

  • PDF

Efficient Multimedia Contents Recommendation System in Mobile Environment (모바일 환경에서의 효율적인 멀티미디어 콘텐츠 추천시스템 구조)

  • Hong, Jong-Kyu;Park, Sung-Joon;Kim, Young-Kuk
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.10d
    • /
    • pp.385-390
    • /
    • 2006
  • 모바일 환경이 언제, 어디서든지 원하는 서비스나 콘텐츠에 접근할 수 있다는 장점에도 불구하고, 모바일 단말기는 여러 가지 취약한 단점들을 가지고 있다. DMB, 인터넷, 모바일 등에 대한 콘텐츠 또는 정보의 양이 거대하게 증가하면서 사용자는 때때로 자신이 원하는 콘텐츠를 찾는데 어려움을 겪게 되며, 많은 시간을 소비하게 된다. 발전하는 모바일 환경 및 단말기의 장점을 최대한 이용할 뿐만 아니라 모바일 단말기가 가지는 제약 사항들의 한계를 극복하여 사용자가 원하는 정보 및 콘텐츠를 언제 어디서나 빠른 시간에 이용할 수 있는 모바일 환경에 적합한 추천시스템의 필요성은 증가하고 있다. 본 논문에서는 기존의 서버 중심의 추천시스템을 개선하여 클라이언트와 서버간의 데이터 교환을 통하여 추천 정확도를 높일 수 있는 추천시스템 구조를 제안한다. 제안하는 시스템은 사용자의 히스토리를 이용하며, 클라이언트에서는 모바일 단말기 사용자만의 히스토리를 이용한 추천 알고리즘을 적용하였고, 서버에서는 협업 필터링을 통해 다른 사용자의 히스토리를 이용한 추천 알고리즘을 적용하였다. 실험 결과는 서버 중심의 추천시스템 보다 더 높은 정확도를 제공할 수 있다는 것을 보여준다.

  • PDF

Clustering-Based Recommendation Using Users' Preference (사용자 선호도를 사용한 군집 기반 추천 시스템)

  • Kim, Younghyun;Shin, Won-Yong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.2
    • /
    • pp.277-284
    • /
    • 2017
  • In a flood of information, most users will want to get a proper recommendation. If a recommender system fails to give appropriate contents, then quality of experience (QoE) will be drastically decreased. In this paper, we propose a recommender system based on the intra-cluster users' item preference for improving recommendation accuracy indices such as precision, recall, and F1 score. To this end, first, users are divided into several clusters based on the actual rating data and Pearson correlation coefficient (PCC). Afterwards, we give each item an advantage/disadvantage according to the preference tendency by users within the same cluster. Specifically, an item will be received an advantage/disadvantage when the item which has been averagely rated by other users within the same cluster is above/below a predefined threshold. The proposed algorithm shows a statistically significant performance improvement over the item-based collaborative filtering algorithm with no clustering in terms of recommendation accuracy indices such as precision, recall, and F1 score.

A Study on Recommendation System Using Data Mining Techniques for Large-sized Music Contents (대용량 음악콘텐츠 환경에서의 데이터마이닝 기법을 활용한 추천시스템에 관한 연구)

  • Kim, Yong;Moon, Sung-Been
    • Journal of the Korean Society for information Management
    • /
    • v.24 no.2
    • /
    • pp.89-104
    • /
    • 2007
  • This research attempts to give a personalized recommendation framework in large-sized music contents environment. Despite of existing studios and commercial contents for recommendation systems, large online shopping malls are still looking for a recommendation system that can serve personalized recommendation and handle large data in real-time. This research utilizes data mining technologies and new pattern matching algorithm. A clustering technique is used to get dynamic user segmentations using user preference to contents categories. Then a sequential pattern mining technique is used to extract contents access patterns in the user segmentations. And the recommendation is given by our recommendation algorithm using user contents preference history and contents access patterns of the segment. In the framework, preprocessing and data transformation and transition are implemented on DBMS. The proposed system is implemented to show that the framework is feasible. In the experiment using real-world large data, personalized recommendation is given in almost real-time and shows acceptable correctness.

A Content-based TV Program Recommendation System Using Age and Plots (연령 및 프로그램 줄거리를 활용한 콘텐츠 기반 TV 프로그램 추천 시스템)

  • Bang, Hanbyul;Lee, HyeWoo;Lee, Jee-Hyong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2015.01a
    • /
    • pp.51-54
    • /
    • 2015
  • 추천 시스템의 대표적인 연구 중 하나인 콘텐츠 기반 추천 시스템 연구는 TV 프로그램이나 영화의 줄거리, 장르, 리뷰 등의 콘텐츠의 메타데이터를 이용한다. 그러나 이러한 연구들은 콘텐츠 관련 정보에만 의존할 뿐, 시청자의 프로파일과 콘텐츠의 정보를 함께 고려하지 않는다. 본 논문에서는 시청자의 프로파일 중 연령과 콘텐츠의 정보인 프로그램의 줄거리를 활용한 TV 프로그램 추천 시스템을 제안한다. 본 추천 시스템은 시청자를 연령에 따라 분류한 후, LDA 알고리즘을 이용하여 시청자의 시청 TV 프로그램의 줄거리를 분류된 나이에 따라 각각의 줄거리 토픽 모델로 생성한다. 이를 기준으로 시청자가 원하는 시간대에 방송되는 프로그램들의 줄거리 토픽벡터와 시청자의 선호도 토픽벡터의 유사도를 비교해 가장 유사도가 높은 TV 프로그램을 시청자에게 추천하는 방식이다. 본 논문에서는 연구의 효용성을 검증하기 위해 줄거리만을 사용한 경우와 줄거리와 연령을 동시에 활용한 경우를 비교 실험하였다. 실험을 통해 프로그램의 줄거리만을 사용한 경우보다 연령을 동시에 활용한 경우의 추천 시스템 성능이 개선된 것을 확인할 수 있었다.

  • PDF

An Empirical Analysis of the Active Use Paths induced by YouTube's Personalization Algorithm (유튜브의 개인화 알고리즘이 유도하는 적극이용 경로에 대한 실증분석)

  • Seung-Ju Bae
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.28 no.2
    • /
    • pp.31-45
    • /
    • 2023
  • This study deals with exploring qualitative steps and paths that appear as YouTube users' usage time increases quantitatively. For the study, I applied theories from psychology and neuroscience, subdivided the interval between the personalization algorithm of the recommendation system, and active use and analyzed the relationship between variables in this process. According to the theory behavioral model theory (FBM), variable reward, and dopamine addiction were applied. Personalization algorithms easy clicks as triggers according to associated content presentation functions in behavioral model theory (FBM). Variable rewards increase motivational effectiveness with unpredictability of the content you search, and dopamine nation is summarized as stimulating the dopaminergic nerve to continuously and actively consume content. This study is expected to make an academic and practical contribution in that it divides the purpose of use of content in the personalization algorithm and active use section into four stages from a psychological perspective: first use, reuse, continuous use, and active use, and analyzes the path.

A Study on the Development of Youtube Channel Recommendation Platform Based on Crowd Sourcing (크라우드 소싱 기반의 유튜브 채널 추천 플랫폼 개발 연구)

  • Lin, Bin;Lim, Young-Hwan;Sim, Jun-Zung;Lee, Yosep
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.3
    • /
    • pp.523-528
    • /
    • 2021
  • Current YouTube recommends similar contents to users based on the contents they actually consumed. Due to the feature of these algorithms, users are well recommended for contents in similar fields, but it is difficult to be recommended contents in fields that have never been consumed. There is a limit to being widely recommended for videos. I want to solve this problem by utilizing crowd sourcing. I propose a platform that can be recommended for various channels, through direct participation of the public people using youtube. Users can be recommended a variety of channels, communicate with people in the channel discussion room, and at the same time generate revenue by recommending channels. I hope that this platform can be used in various crowd sourcing-based recommendation platforms.