• Title/Summary/Keyword: 콘크리트 양생

Search Result 741, Processing Time 0.022 seconds

Strength Development and Hardening Mechanism of Alkali Activated Fly Ash Mortar (알카리 활성화에 의한 플라이애쉬 모르타르의 강도 발현 및 경화 메커니즘)

  • Jo, Byung-Wan;Park, Min-Seok;Park, Seung-Kook
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.4 s.94
    • /
    • pp.449-458
    • /
    • 2006
  • The discharge of fly ash that is produced by coal-fired electric power plants is rapidly increasing in Korea. The utilization of fly ash in the raw materials would contribute to the elimination of an environmental problem and to the development of new high-performance materials. So it is needed to study the binder obtained by chemically activation of pozzolanic materials by means of a substitute for the cement. Fly ash consists of a glass phase. As it is produced from high temperature, it is a chemically stable material. Fly ash mostly consists of $SiO_2\;and\;Al_2O_3$, and it assumes the form of an oxide in the inside of fly ash. Because this reaction has not broken out by itself, it is need to supply it with additional $OH^-$ through alkali activators. Alkali activators were used for supplying it with additional $OH^-$. This paper concentrated on the strength development according to the kind of chemical activators, the curing temperature, the heat curing time. Also, according to scanning electron microscopy and X-Ray diffraction, the main reaction product in the alkali activated fly ash mortar is Zeolite of $Na_6-(AlO_2)_6-(SiO_2)_{10}-12H_2O$ type.

Fatigue Lives of Pavement Concrete According to Fatigue Test Methods (실험방법에 따른 포장 콘크리트의 피로수명)

  • Yun, Kyong-Ku;Kim, Dong-Ho;Hong, Chang-Woo
    • International Journal of Highway Engineering
    • /
    • v.5 no.3 s.17
    • /
    • pp.11-20
    • /
    • 2003
  • Concrete structures such as bridges, pavement, and offshore structures are normally subjected to repeated load. Because highway and airfield pavements are to resist tension in bending, fatigue failure behavior is very important the fatigue life of materials. Therefore, in this paper was carried according to the fatigue test method and experiment variables for pavement concrete. The fatigue tests were applied split tension($150{\times}75$ in size) and flexural($150mm{\times}150mm{\times}550mm$ in size) beam fatigue test method. Major experimental variable in the fatigue tests in order to consideration of fatigue life were conducted loading frequency of 1, 5, 10, 20Hz and loading shape of block, sine, triangle and moisture condition of dry and wet condition and curing age of 28day and 56day. The test results show that the effect of loading frequency increasing the frequency increased fatigue life, decreased significant at frequencies below 200 cycles. The effect of loading wave form on fatigue life show that a block decreased, triangular increased in comparison with sine. The effect of moisture condition decreased in wet condition in comparison with dry condition. The effect of curing age increased in 564ays in comparison with 28day.

  • PDF

Effects of the Reaction Degree of Ground Granulated Blast Furnace Slag on the Properties of Cement Paste (고로슬래그 미분말의 반응도가 시멘트 페이스트의 물성에 미치는 영향에 관한 연구)

  • Kim, Dong-Yeon;Cho, Hyeong-Kyu;Lee, Han-Seung
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.6
    • /
    • pp.723-730
    • /
    • 2014
  • The usage of Ground Granulated Blast Furnance Slag (GGBFS) has been increased recently. Studies on the cement hydration model incorporating GGBFS as well as the properties of cement paste done with GGBFS such as compressive strength, hydration products and hydration heat have been the subjects of many researches. However, studies on the reaction degree of GGBFS that affect the properties of cement paste incorporating GGBFS are lacking globally and specially in Korea. Thus, in this study, the reaction degree of GGBFS using the method if selective dissolution, compressive strength, the amount of chemical bound water and $Ca(OH)_2$ were measured and analysed in accordance with water-binder ratio, replacement ratio of GGBFS, and curing temperature. The results show that the reaction degree of GGBFS, the amount of chemical bound water and $Ca(OH)_2$ in cement paste with GGBFS were higher in conditions where the replacement ratio of GGBFS was low and both water-binder ratio and curing temperature were high. Finally, the reaction degree of GGBFS was achieved at a value between 0.3~0.4.

A Study on the Effect of Fire Heat on the Durability of Concrete Structures Repaired and Reinforced with Epoxy Resin (화열(火熱)이 에폭시수지로 보수·보강된 콘크리트 구조체의 내구성에 미치는 영향에 관한 연구)

  • Tai Kwan Cho
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.1
    • /
    • pp.138-145
    • /
    • 2023
  • Purpose: In accordance with the increase in the number of buildings repaired and reinforced following deterioration from when a fire occurs in a previously reinforced building, the impact on the structure after the fire is analyzed to establish standards for repair and reinforcement measures. Method: After curing for 28 days, the process was to measure the compressive strength and induce destruction through a compressor, repair and reinforce it with epoxy, and conduct a re-compressive strength test on some specimens after curing for 3 days to understand the degree of strength restoration. The rest of the repaired and reinforced specimens as well as the unrepaired and unreinforced specimens were then put into an oven and heated according to the temporal and temperate conditions listed below, and then the compressive strength was tested to estimate the impact of fire. Result: After reinforcing the yielded specimen with epoxy, the process was to then put it in an oven and heat it at different temperatures over time. It was found that there was a decrease in the strength of the reinforcement more than that of the actual specimen. Conclusion: Based on this, it was found that a building repaired and reinforced with epoxy resin is actually more dangerous than a general unrepaired building when it is damaged by fire, and thus, that it must be prepared for fire vulnerabilities.

A Study on Chloride Threshold Level of Blended Cement Mortar Using Polarization Resistance Method (분극저항 측정기법을 이용한 혼합 시멘트 모르타르의 임계 염화물 농도에 대한 연구)

  • Song, Ha-Won;Lee, Chang-Hong;Lee, Kewn-Chu;Ann, Ki-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.3
    • /
    • pp.245-253
    • /
    • 2009
  • The importance of chloride ions in the corrosion of steel in concrete has led to the concept for chloride threshold level (CTL). The CTL can be defined as the content of chlorides at the steel depth that is necessary to sustain local passive film breakdown and hence initiate the corrosion process. Despite the importance of the CTL, due to the uncertainty determining the actual limits in various environments for chloride-induced corrosion, conservative values such as 0.4% by weight of cement or 1.2 kg in 1 $m^3$ concrete have been used in predicting the corrosion-free service life of reinforced concrete structures. The paper studies the CTL for blended cement concrete by comparing the resistance of cementitious binder to the onset of chloride-induced corrosion of steel. Mortar specimens were cast with centrally located steel rebar of 10 mm in diameter using cementitious mortars with ordinary Portland cement (OPC) and mixed mortars replaced with 30% pulverized fuel ash (PFA), 60% ground granulated blast furnace slag (GGBS) and 10% silica fume (SF), respectively, at 0.4 of a free W/B ratio. Chlorides were admixed in mixing water ranging 0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.5, 2.0, 2.5 and 3.0% by weight of binder(Based on $C1^-$). Specimens were curd 28 days at the room temperature, wrapped in polyethylene film to avoid leaching out of chloride and hydroxyl ions. Then the corrosion rate was measured using the polarization resistance method and the order of CTL for binder was determined. Thus, CTL of OPC, 60%GGBS, 30%PFA and 10%SF were determined by 1.6%, 0.45%, 0.8% and 2.15%, respectively.

A Study on Preventive Methods Against Concrete Corrosion by Sea Water of the of West Sea (서해조수에 의한 콘크리트의 부식 방지법에 관한 연구)

  • 고재군
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.14 no.2
    • /
    • pp.2622-2633
    • /
    • 1972
  • This study was attempted in order to search for phyosical properties on various mix designs of concrete as ne of studies relating top revention against corrosion by action of sea water in the West Sea. In this study, as concerete mix design, fly ash, pozzolith and vinsolresin were used as admixtures for normal portland cement respectively, and pozzolan cement and normal cement were also used for each plain concrete. Concrete specimens were made and cured in accordance with the Korean Standard Specifications for concrete. In thetest, compressive strengths of the specimens were measured at the following ages; 7-day, 28-days and 3-months. Absorption test was made by immersing the specimens in water kept at boiling temperature for 5 hours. The results obtained from the tests are summarized as follows; 1. The use of fly ash as an admixture in mix design of concrete, has an effect on compressive strength at each age. But it is actually not effective on absorption by concrete, as the result of the fly ash concrete is almost the same at that of ordinary plain concrete. 2. The use of pozzolith as an admixture in mix design of concrete, has an effect on both of compressive strength at each age and absorption rate. The pozzolith is more effective than vinsol resin, relating to improvement for physical proreties of concrete. 3. The use of vinsol resin as an admixture in mix design of concrete, has also an effect on both of compressive strength at each age and absorption rate. As the above fact, effectiveness of the vinsol resin is some what lower than pozzolith, as far as physical properties of the concrete are concerned. 4. Plain concrete used pozzolan cement only is the most effective on both of strength at each age and absorption rate in this study. The pozzolan cement is characteristic of higher strenth as the age is later. 5. Relationship between compreessive strengths and absorption rates of the concrete is shown by a different regression line dependingon ages. The gradient of the regression line is steeper as the age is later. 6. Throught physical test, it may be expected that the use of pozzolith and vinsol resinas asan admixture respectively will be better resistant than fly ash or ordinary plain concrete and that plain pozzolan concrete will also be the best resistant to action of sea water due to improvement of theirphysical properties.

  • PDF

Drying Shrinkage Properties of Latex Modified Concrete with Ordinary Cement and Rapid-Setting Cement (초속경 및 일반시멘트를 이용한 라텍스개질 콘크리트의 건조수축 특성)

  • Yun, Kyong-Ku;Jeong, Won-Kyong;Kim, Sung-Hwan;Lee, Joo-Hyung
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.1
    • /
    • pp.95-101
    • /
    • 2003
  • Drying shrinkage cracking which may be caused by the relatively large specific surface is a matter of grave concern for latex modified concrete(LMC) overlay and rapid-setting cement latex modified concrete(RSLMC) overlay. LMC and RSLMC were studied for field applications very actively in terms of strength and durability in Korea. However, there were no considerations in drying shrinkage. Therefore, the purpose of this dissertation was to study the drying shrinkage properties of LMC and RSLMC with the main experimental variables such as cement types(ordinary portland cement, rapid setting cement), latex contents(0, 5, 10, 15, 20%) and curing days at a same controlled environment of 60% of relative humidity and $20^{\circ}C$ of temperature. The drying shrinkage for specimens was measured with a digital dial gauge of Demec. The test results showed that the drying shrinkage of LMC and RSLMC were considerably lower than that of OPC and RSC, respectively. This might be attributed to the interlocking of hydrated cement and aggregates by a film of latex particles, water retention due to hydrophobic, and colloidal properties of the latexes resulting in reduced water evaporation.

Compressive Strength Experiment of Lightweight Concrete Using Coarse Aggregate Produced by 3D Printing (3D 프린팅으로 제작한 굵은 골재를 사용한 경량콘크리트의 압축강도 실험)

  • Ahn, Byung-Ju
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.5
    • /
    • pp.54-59
    • /
    • 2020
  • Coarse aggregate is produced in various ways depending on the location and production method. Currently, the construction industry is in need of a stable supply of coarse aggregate and a way to secure standard quality. The purpose of this study is to examine whether the use of coarse aggregate in 3D printing can help solve this problem. ABS filament was selected for use in 3D printing. CATIA was used for the design of the coarse aggregate, and CUBICON Single Plus was used for the production. Six specimens were produced and cured in water for 28 days. Three of them were made with AE agent, and three were made without it. A compressive strength test confirmed that when the AE agent was used, the compressive strength was greater than the lightweight concrete design criterion specified in the concrete standard specification. This suggests that coarse aggregate produced by a 3D printer may be used for lightweight concrete. A mass production system using this method could help to solve the problems facing the construction industry, such as stable supply and demand for coarse aggregate and securing standard quality.

A Study for Controlling Early-age Temperature Rise of the Concrete Pavement by Shadow Tent in Hot Weather Construction (차광막를 이용한 하절기 콘크리트포장의 초기온도 관리 방안연구)

  • Joh, Young-Oh;Kim, Hyung-Bae;Suh, Young-Chan;Ann, Sung-Soon
    • International Journal of Highway Engineering
    • /
    • v.6 no.4 s.22
    • /
    • pp.75-89
    • /
    • 2004
  • Long term performance of concrete pavement significantly depends on the given construction and environmental condition. It means that random cracks and extreme crack width due to inappropriate quality control at the early age might lead to decreasing the pavement service life. The temperature and moisture during the construction, cement and aggregate types, curing condition are major components to affect the quality of the concrete pavement at the early age. First of all, the high temperature differential, that is made by increasing air temperature and the heat of cement hydration, is known as the major contributor to severe cracks. In this study, tent covering was used for controlling temperature of the concrete slab. The field measurement data indicates that the effect of the tent covering is very significant to decrease possibilities of random crack occurrence and curling stress and enhance the long-term concrete strength. HIPERPAV(High PERformance PAVing software), a program predicting the strength and stress of an earty-age concrete pavement (72 hour after placement), is used for simulating the effects of tent covering. The HIPERPAVE results showed that the section with the tent covering has higher reliability than the section without the tent covering by 22.5%. In details, reliability is increased 72.5% (without the tent covering) to 95% (with the tent covering).

  • PDF

Fundamental Properties of Magnesia-Prosphate Composite Considering Mix Conditions and Curing Temperature (배합조건 및 양생온도에 따른 마그네시아 인산염 복합체의 기초물성 평가)

  • Cho, Hyun Woo;Kang, Su Tae;Shin, Hyun Seop;Lee, Jang Hwa
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.6
    • /
    • pp.163-170
    • /
    • 2012
  • With the advantage of a rapid exothermic reaction property, jet set concrete may be used as a cold weather concrete because it can reach the required strength before being damaged by cold weathers. And it can be hardened more quickly if the field temperature is properly compensated by heating. Because ordinary concrete cannot be hardened well under sub-zero temperatures, anti-freeze agents are typically added to prevent the frost damage and to ensure the proper hardening of concrete. While the addition of a large amount of anti-freeze agent is effective to prevent concrete from freezing and accelerates cement hydration resulting in shortening the setting time and enhancing the initial strength, it induces problems in long-term strength growth. Also, it is not economically feasible because most anti-freeze agents are mainly composed of chlorides. Recent studies reported that magnesia-phosphate composites can be hardened very quickly and hydrated even in low temperatures, which can be used as an alternative of cold weather concrete for cold weathers and very cold places. As a preliminary study, to obtain the material properties, mortar specimens with different mixture proportions of magnesia-phosphate composites were manufactured and series of experiments were conducted varying the curing temperature. From the experimental results, an appropriate mixture design for cold weathers and very cold places is suggested.