• Title/Summary/Keyword: 콘크리트 압축강도 추정

Search Result 173, Processing Time 0.028 seconds

Experimental Study on Dynamic Characteristics of Vibration-Controlled Concrete Beam (제진 콘크리트 보의 동적특성에 관한 실험적 연구)

  • 정영수;최우성;이대형
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.6
    • /
    • pp.185-193
    • /
    • 1997
  • 본 연구는 각종 제진재료를 이용하여 진동을 억제할 수 있는 콘크리트를 개발하여 각종 건설공사에서 흔히 발생할 수 있는 진동공해문제를 억제하고자 하며 아울러 폐기물의 재활용차원에서 폐자재를 이용하여 유용한 제진콘크리트를 개발하고자 하는데 그 목적이 있다. 우선, 제진재료를 이용한 압축강도 (200kg/$\textrm{cm}^2$)이상의 콘크리트 배합비를 찾기 위하여 24배치의 예비실험을 수행하였으며, 선정된 적정배합비에 따른 제진재료를 이용한9개의 진동시험체보를 제작하여 보의 구조적 및 재료적 동적특성 즉 1차 공명진동수와 동적 휨강성 및 감쇠비를 측정하여 제진효과를 조사하였다. 그리고 압축강도에 의한 각 시험체의 균열모멘트를 추정하여 재하하중과 균열모멘트비(M/Mcr)에 따른 하중단계별 동적특성값을 살펴보았다. 제진재료로서는 라텍스(Latex), 고무분말(Rubber Powder)그리고 플라스틱 레진( Plastic Resin)등을 사용하였고, 재료적, 구조적 진동감쇠효과를 파악하고자 KS F2437규정과 진동파의 속도법을 사용하였으며, 감쇠비 측정은 Frequency Spectrum 곡선에 대한 Polynomial Curvefitting 방법과 기하학적 해석방법을 이용하여 각각의 결과를 비교.분석하였다.

An Experimental Study on the Estimation of Compressive Strength and the Physical Properties of Recycled Aggregate Concrete of Fixed Slump (슬럼프 고정 순환골재콘크리트의 물리적 특성 및 압축강도 추정에 관한 실험적 연구)

  • Kim, Sang-Heon;Jeon, Chan-Soo;Lee, Sea-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.2
    • /
    • pp.51-58
    • /
    • 2018
  • This study was a basic research for actual production of recycled aggregate concrete, and experiments were carried out on the change of water cement ratio and physical properties of recycled aggregate concrete with fixed slump. Results were as follows. Concrete using recycled aggregate were required increased water to maintain the target slump, and the recycled fine aggregate are necessary more increased water more than the recycled coarse aggregate. The replacement ratio of recycled fine aggregate be less than 60%, would be possible to obtain the air content volume that did not deviate from the concrete quality specification. The compressive strength of concrete using recycled aggregate decreased with increasing the replacement of recycled aggregate, and compressive strength decreased by 25% when 100% recycled fine aggregate were replaced. As a result of analyzing the correlation of compressive strength according to the mixing factors of concrete, it was found that replacement of recycled fine aggregate> water cement ratio> air content volume were influenced in order.

Strength Prediction Equations for High Strength Concrete by Schmidt Hammer Test (슈미트 해머 시험에 의한 고강도 콘크리트의 강도 추정식)

  • Kwon, Young-Wung;Park, Song-Chul;Kim, Min-Su
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.3 s.93
    • /
    • pp.389-395
    • /
    • 2006
  • For the assessment of exsiting concrete structures, it is important to get the real strength of concrete. The load test or core test has many problems due to cost time, easiness, structural damage, and reliability and so on. Thus, various non-destructive test and statistical analysis techniques for strength assessment have been developed. As a result the real strength of concrete can be obtained by both direct and indirect test. In this study, a series of experimental tests of core strength and Schmidt hammer tests on 3, 7, 14, 28, 90, 180, 365, and 730 days' were done for predicting the compressive strength of high strength concrete with 65.0MPa of 28-days' strength. Each experimental results was analyzed by simple regression analysis. Then, reliability level and error rate between the proposed equations and the existing ones was examined. However, the application of the exsisting equations was inadequate to high strength concrete, because they were conducted under normal strength concrete. Therefore, the following compressive strength equations were proposed for predicting the compressive strength of high strength concrete by Schmidt hammer test. The proposed equations by Schmidt hammer test are as follows.

A Proposal of Elastic Modulus Equation for High-Strength and Ultra-High-Strength Concrete (국내의 실험자료를 이용한 고강도 및 초고강도 콘크리트의 탄성계수식 제안)

  • 장일영;박훈규;윤영수
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.6
    • /
    • pp.213-222
    • /
    • 1996
  • This paper presents the improved elastic modulus equation more appropriate to predict the modulus of elasticity of structural elements designed and made by high- and ultra high-strength concrete under domestic situation in Korea. To justify and assess the proposed elastic modulus equation, more than 400 laboratory test data domestically available in the literature and having the range of 400 to 1.000kg/$\textrm{cm}^2$ in concrete compressive strength were collected and analyzed statistically. Comparison of the proposed elastic modulus equation with the previously suggested equations in the ACI363R. CEB-FIP, NS3473 and New-RC were also presented to demonstrate the applicability to practice.

An Experimental Study on the Early Strength Prediction of Concrete by Maturity Method (적산온도법을 이용한 콘크리트 조기강도 예측에 관한 실험적 연구)

  • Kwon, Hae-Won;Bae, Yeoun-Ki;Kim, Suk-Il;Jee, Suk-Won;Lee, Jae-Sam;Song, In-Myung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.753-756
    • /
    • 2008
  • Recently, construction work period reduction is a very important topic of construction business circles. Because that is just big cost reduction. There is an important part of construction to decide the removal time of form. For prediction strength for removal form, P type schmidt hammer method and maturity method is used that. In case early strength prediction of maturity method, that is problem. Because setting duration of concrete is not proper considering. So this experimental study is a coefficient(A) of maturity method.

  • PDF

Probability-Based Performance Prediction of the Nuclear Contaminated Bio-Logical Shield Concrete Walls (원전 방사화 콘크리트 차폐벽의 확률 기반 성능변화 예측)

  • Kwon, Ki-Hyon;Kim, Do-Gyeum;Lee, Ho-Jae;Seo, Eun-A;Lee, Jang-Hwa
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.4
    • /
    • pp.316-322
    • /
    • 2019
  • A probabilistic approach considering uncertainties was employed to investigate the effects on the material characteristics and strength of nuclear bio-logical shield concrete walls, when exposed to long-term radiation during the entire service life. Time-dependent compressive and tensile strengths were estimated by conducting the neutron fluence analysis. For the contaminated concrete, individual compressive and tensile failure probabilities can be possibly evaluated by not only establishing limit-state function withthe predefined critical values but also performing Monte Carlo Simulation. Nuclear power plant types similar to the Kori Unit 1, which was shut off permanently in 2017 after the 40-year operation, were herein selected for an illustrative purpose. Consequently, the probability-based performance assessment and prediction of contaminated concrete walls were well demonstrated.

Strengthening Effect of Axial Circular Concrete Members Wrapped by CFRP sheet (CFRP sheet로 감싼 원형 콘크리트 압축부재의 보강 효과)

  • Moon, Kyoung-Tae;Park, Sang-Yeol;Kim, Moon-Kwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.5
    • /
    • pp.10-21
    • /
    • 2015
  • Many studies have been carried out on carbon fiber-reinforced plastic sheet(hereafter CFRP sheet)-confined concrete specimens for improve structural performance of concrete structures. To complement the existing studies, a parametric study is conducted to examine the effect of various design parameters such as layers of CFRP sheet, size and aspect ratio of specimens, and overlap length. The behavior of CFRP-confined concrete is compared using stress-strain curves of each specimen. And the strengthening effect of CFRP sheet is examined by maximum compressive strength. As the layers of CFRP sheet increases, structural performance of CFRP-confined concrete is significant increased. If the overlap length is more than 5% of circumstance, strengthening effect is not affected. In addition, a test database assembled from test results and existing studies is presented. Using these test database, accuracy and reliability of the existing strength models for CFRP-confined concrete are verified.

An Estimation Procedure for Concrete Modulus by Using Concrete Strength Relationships in the LTPP Test Sections (콘크리트 물성 정량화식을 이용한 LTPP 구간의 탄성계수 추정방법)

  • Yang, Sung-Chul;Cho, Yoon-Ho
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.2
    • /
    • pp.39-46
    • /
    • 2010
  • Concrete strength relationship between various strength properties was presented through experimental data from concretes made from different sources of coarse aggregates and fine aggregates, and different amount of cement contents. In the strength relationship were included compression-flexure, compression-split tension, compression-modulus and flexure-split tension. A total of 61~81 data sets were analyzed while each data set is composed of 3 to 4 experimental test data. Using the proposed strength relations, a procedure to reliably estimate modulus values from the LTPP field test section was suggested. Core specimens were taken from 10 LTPP sections on the expressway as well as 4 sections on the national road. Then compressive strengths and modulus were determined in the lab. Finally concrete modulus was averaged with the estimated values by using the derived relationship and experimental values.

The Application of a Simplified Pullout Test for High-Strength Concrete (고강도 콘크리트에 대한 간이 인발시험법 적용)

  • Ko, Hune-Bum;Jeon, Doo-Jin;Lee, Min-Jae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.5
    • /
    • pp.49-55
    • /
    • 2017
  • In the seventies, a number of researchers carried out experiments on pullout tests with prototype equipment, and the pullout test was certified as a reliable nondestructive testing(NDT) method for determining the strength of concrete. To estimate the strength of high-strength concrete, we propose a simplified pullout test that uses as a break-off bolt a standard 10mm bolt with a groove on the shaft, an insert nut, and a pullout instrument that includes a hydraulic oil pump without a load cell. To verify the advantages of the simplified pullout test(low cost, simplicity, and convenience), four wall specimens were tested with two levels of concrete strength, 30 MPa and 50 MPa, using a simplified pullout tester with a load cell. The pullout load and concrete compressive strength were measured every day until day 7, day 14, day 21 and day 28. It was found that the pullout load was very similar to the compressive strength. Therefore, we have verified that a simplified pullout test can be used to evaluate the in-place strength of high-strength concrete in structures. The prediction equation of the groove diameter of the break-off bolt(y) with the concrete strength(x) was derived as y=0.05x+3.79, with a coefficient of determination of 0.88 found through regression analysis.

A Study on the Prediction of the Strength and Axial Strain of High-Strength Concrete Columns Confined by Tie Reinforcement (띠근 보강 고강도 콘크리트 기둥의 강도 및 축변형 특성 산정에 관한 연구)

  • Park, Hoon-Gyu;Jang, Il-Young
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.2
    • /
    • pp.197-208
    • /
    • 1999
  • The use of high-strength concrete which permits smaller cross sections, reduced dead loads, and longer spans has been getting more popular in tall buildings. However, there has been little research on behavior of high-strength concrete columns laterally reinforced with square ties and subjected to compressive loading. With the addition of transverse reinforcement which lead to triaxial compressive state, ductility behavior of high-strength column member shall be increased. In this study, rational quality and quantity evaluations were made to investigate the ultimate strength and strain ductility by confinement effect of tie reinforced high-strength concrete columns subject to uniaxial loads. Concrete failure theory at the triaxial compressive state and statistical results based on conventional experimental data were applied for this propose. Up to 185 columns, tested under monotonically increasing concentric loading, were evaluated in terms of strength and strain ductility. Analytical results show that confinement stress, maximum compressive strength, and increase of strain equations were developed with the consideration of concrete strength, yield strength, spacing, volumetric ratio, and configurations of tie reinforcement.