• Title/Summary/Keyword: 콘크리트 강도 추정 시스템

Search Result 15, Processing Time 0.025 seconds

Quality Management Platform of Ocher Concrete Using Nondestructive Tests Based on the Stress Waves (응력파기반 비파괴검사법을 이용한 황토콘크리트 품질관리 플랫폼)

  • Hong, Seong-Uk;Kim, Seung-Hun;Kim, Seong-Yeob
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.6
    • /
    • pp.120-127
    • /
    • 2016
  • Several problems including respiratory and skin disorders due to the problems for sick house syndrome have occurred, there appears echo friendly materials to solve the problems. The research is lacking in quality management techniques ocher concrete using nondestructive tests. In this research, the experimental works were conducted to study the initial quality control for the compressive strength of Ocher concrete(21 MPa). The purpose of this study is the implementation platform for quality management of ocher concrete using nondestructive tests. It uses the relationship between the compressive strength and ultrasonic pulse velocity of the ocher concrete to estimate the compressive strength of the ocher concrete. And using the impact echo method to estimate the thickness of the ocher concrete. The platform is based on a Java script, so that the user can obtain the data through the platform.

Estimation of Setting Time and Early-age Strength of Concrete Using the Ultrasonic Pulse Velocity (초음파 속도를 이용한 콘크리트의 응결 및 초기 강도 추정)

  • Lee, Hoi-Keun;Lee, Kwang-Myong;Kim, Young-Hwan;Yim, Hyun-June
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.3
    • /
    • pp.292-303
    • /
    • 2002
  • This paper presents experimental results for early-age properties of concrete such as the setting time and strength, evaluated via the ultrasonic pulse velocity (UPV). Developing and using an automatically-recording monitoring system, the UPV's of mortar and concrete with various water to binder ratios (W/B) were measured during the first 24 hours. In addition, probe penetration and compression tests were conducted to measure the setting time and compressive strength, respectively. It was observed that the UPV's of mortar with high W/B remained constant during the first 6.5 hours and then abruptly began to increase at constant rates. On the other hand, the UPV of mortar with low W/B increased relatively slowly and gradually due to the setting retardation caused by the use of high range water reducing agent (HRWR). It was found that setting of concrete occurs when the UPV reaches a certain value. Moreover, it was concluded that the estimation formulas should incorporate the effects of W/B to more accurately estimate the early-age strength of concrete from the UPV.

Concrete Strength Prediction System by Maturity Method using RFID (RFID를 활용한 적산온도방식의 콘크리트 강도 추정 시스템 기초 연구)

  • Park, So-Hyun;Oh, Yong-Seok;Song, Jeong-Hwa;Oh, Kun-Soo
    • Proceeding of Spring/Autumn Annual Conference of KHA
    • /
    • 2008.04a
    • /
    • pp.399-404
    • /
    • 2008
  • The objective of this study is to develop the predicting method of concrete strength when remove concrete form-work without making cement test piece at construction site. For this purpose, this study catches the Maturity Method by using RFID, the usability of which is now being emphasized at site, accumulates and record the strength data, which can be gained with the results of existing Maturity Method method that is accompanied with strength estimation study, in database, and finally proposes the system structure which can check the estimated strength by Maturity Method. The merits of this method by using of Maturity Method are as follows; More objective, precise, and rapid decision can be made to the concrete strength and about the maintaining period of concrete form and form support. More efficient control of integrated material management system can be possible. Architectural field example using RFID can be suggested more concretely. RFID applicability can be extended by using DB of material integration management system.

  • PDF

An Analysis on Punching Shear of Two-way Void Slab (이방향 중공슬래브-기둥 접합부 뚫림전단성능의 해석적 평가)

  • Lee, Yung Eun;Ryu, Jaeho;Ju, Young Kyu;Kim, Sang Dae
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.32-32
    • /
    • 2011
  • 최근 국내외에서 친환경건축물에 관한 관심이 매우 높아짐으로 인해 콘크리트의 물량을 절감하여 이산화탄소량을 줄이는 중공슬래브는 다양한 형태로 세계적으로 개발이 되고 있는 추세이다. 특히 이방향 중공슬래브는 환경적인 측면에서 이방향 중공슬래브는 중공부 생성에 재생플라스틱을 활용하여 폐자원을 재사용하고, 콘크리트와 철근의 사용량 절감에 따른 화석에너지 및 이산화탄소 발생량을 감소한다는 장점이 있다. 또한 시스템 측면에서 이방향 중공슬래브는 기존의 철근콘크리트 플랫플레이트 바닥구조 시스템의 자중을 절감하여 구조체를 경량화 시키고, 이에 따라 장스팬 구현이 가능하며, 단열효과가 뛰어나다. 이와 같이 이방향 중공슬래브는 장점이 많지만 플랫플레이트 슬래브의 취약점인 뚫림전단 파괴에 주의해야 한다. 이에 본 연구에서는 선행으로 실시된 이방향 중공슬래브-기둥 접합부 뚫림전단 성능평가 실험을 바탕으로 하여 경량체가 이방향 중공슬래브-기둥 접합부 뚫림전단 성능에 미치는 영향을 살펴보기 위해 범용 유한요소해석 프로그램인 ABAQUS를 사용하여 경량체량 및 위치를 주요변수로 한 해석적인 변화를 검토하였다. 본 연구를 통해 경량체가 삽입된 이방향 중공슬래브의 뚫림전단 성능에 대해, 해석결과 경량체 량과 위치에 따라 최대 뚫림전단강도는 기준 실험체에 비해 74.3%, 73%의 강도저하를 나타내는 것으로 알 수 있었다. 이는 실험상의 강도저하 값인 84.1%, 56.4%와 다소 차이가 있으며, 해석에서 중공부 주위의 응력집중 현상이 제대로 반영되지 않은 것으로 판단된다. 또한 이방향 슬래브에 경량체를 삽입 할 경우 경량체가 시작하는 부분에서 응력이 급격히 감소하는 현상이 나타났으며, 이러한 급격한 응력감소는 기둥 주위 위험단면의 변화를 가져오는 것으로 추정된다. 즉, 위험단면의 변화는 기둥으로부터 경량체 사이의 거리에 따라 달라지며, 위험단면 내의 콘크리트 단면 손실은 뚫림전단 강도를 감소시킨다. 본 연구에서는 이방향 중공슬래브의 뚫림전단강도를 산정할 수 있는 근사식을 제안하였으며, 보다 정확한 이방향 중공슬래브의 뚫림전단강도의 산정식을 위해서는 위험단면의 변화와 콘크리트 단면손실로 인한 전단강도 저하의 관계에 대한 추가적인 연구가 필요하다.

  • PDF

Estimation Formula for Shear Strength of RCS Beam-Column Joint (RCS 보-기둥 접합부의 전단강도 산정식 평가)

  • Chang, Kug-Kwan;Jeon, Choong-Geun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.4
    • /
    • pp.1-9
    • /
    • 2015
  • This study is on the shear strength of the internal joints of RCS composite structure consisting of reinforced concrete column and steel beam. As a newly structure system, the composite system has been developed to fully utilize the advantages of reinforced concrete column and steel beam, which also include economic and practical joint detail. Nevertheless stress transfer mechanism and structural behavior of the joints had not been still clearly revealed and shown much difference from the proposed equation. In this study, by observing the crossing of reinforced concrete column through steel beam to the RCS structure beam type, thirty seven shear failure specimens were selected and applied to the 5 major equations which is used to calculate the shear strength of RCS joint. Through the regression analysis, modified equation which is more reliable and approximate results for shear strength of RCS joints was proposed.

A Study on Compressive Strength Estimation of Underwater Concrete Structures According to Water Depths (수중 콘크리트 구조물의 수심별 강도 추정에 관한 연구)

  • Lee, Jisung;Han, Sanghun;Park, Seunghee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.3
    • /
    • pp.341-348
    • /
    • 2016
  • Harbor facilities require long-term durability and safety, and also maintain the performance requirement until the durability life. However, existing harbor facilities are becoming superannuated with durable years and durability is declined by erosion of the sea and damage from sea. In addition, harbor facilities will be in demand for the expansion of harbor and offshore structures with rising economic power by enhancement of domestic industry and increase of import and export. Therefore, in this study, two kinds of nondestructive test (NDT) techniques (schmidt rebound hammer and ultrasonic sensor) are verified for the effective maintenance of underwater concrete structures including harbor facilities. Sea field applicability of Schmidt hammer and ultrasonic sensor was verified by comparing field test result with sea field test result and also deduced the compressive strength estimation equation by depth of the water. On the basis of the sea field test result, compressive strength estimation equation which was deduced by multiple regression analysis indicated highest accuracy compared to other equations, especially it will be more likely to be used in underwater because of the depth of water correction. In the future, if schmidt hammer and ultrasonic sensor which were invented as waterproofing are used with ROV (Remotely Operated Vehicle), it will be possible to make a diagnosis of high reliability for underwater concrete structures and set up a ubiquitous concept of NDT system.

An Experimental Study for Supposed Heating Temperature of Deteriorated Concrete Structure by fire Accident (화재피해를 입은 콘크리트구조물의 수열온도 추정을 위한 실험적 연구)

  • 권영진
    • Fire Science and Engineering
    • /
    • v.18 no.3
    • /
    • pp.51-56
    • /
    • 2004
  • A fire outbreak in a reinforcement concrete structure looses the organism by the different contraction and expansion of hardened cement pastes and aggregate, and causes cracks by thermal stress, leading to the deterioration of the durability. So concrete reinforcement structure is damaged partial or whole structure system. Therefore diagnosis of deterioration is needed based on mechanism of fire deterioration in general concrete structures. Fundamental information and data on the properties of concrete exposed to high temperature are necessary for accurate diagnosis of deterioration. In this study, it was presented data for the accurate diagnosis and selection of repair and reinforcement system for the deteriorated concrete heated highly, various concrete such as standard design compressive strength, fine aggregate and admixture were exposed to a high temperature environment. And fundamental data were measured engineering properties such as explosive spatting, ultrasonic pulse velocity and compressive strength.

Insulation Effect of Double Layered Bubble Sheet Application in Cold Weather Concrete and Initial Quality Control by Wireless Sensor Network (한중시공에서 2중 버블시트 포설에 따른 단열 효과분석 및 무선센서 네트워크에 의한 초기 품질관리)

  • Han, Min-Cheol;Seo, Hang-Goo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.1
    • /
    • pp.21-29
    • /
    • 2021
  • The objective of this study is to evaluate the effect of the application of double layered bubble sheet on the curing of slab and wall concrete placed at the job site in cold weather and to offer a feasibility of Concrete IoT Management System(CIMS), which is wireless sensor network developed by the authors, to manage early age quality of the concrete in terms of temperature, maturity and strength development. Test results indicated that the application of bubble sheet enhances the insulation performance, which results in an increase of the temperature by around 1~20. 6℃. It is found that CIMS can gather the temperature, maturity and strength development data from the sensors embedded from 30 m far from CIMS successfully. Predicted compressive strengths by CIMS had good agreement with measured ones within 2 MPa error level until 7 days. It is thought that the combination of the bubble sheet application for cold weather protection and CIMS for quality management tool in cold weather concreting contributes to shorten the time for the form removal by one day.

Setting Assessment of Hogh Strength Concrete Using the Ultrasonic Pulse Velocity Monitoring (초음파 속도 모니터링에 의한 고강도 콘크리트의 응결 평가)

  • 이회근;이광명
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.973-981
    • /
    • 2002
  • Recently, the use of high strength concrete (HSC) has increased dramatically md however, few studies have been conducted on the early-age properties of HSC such as setting. The penetration resistance test (specified by KS F 2436) that is the standard test method for determining initial and final setting times of concrete, may not be appropriate for HSC because of the high viscosity of the mortar mixture. To address this issue, an ultrasonic pulse velocity (UPV) monitoring system was used to investigate the setting behavior of mortar and concrete. The experimental study was carried out to measure the UPV's of mortars and concretes having various water/binder ratios (W/B) and various fly ash replacement levels, during the first 24 hours of testing. Test results showed that the UPV in concrete was developed faster than that of mortar with the same W/B, and that of ordinary concrete was greater than that of fly ash concrete. Typical values of UPV were suggested that correspond to the initial and final setting times, based on following criteria: (1) the penetration resistance method; (2) the instant when the UPV begins to develop; and (3) the instant when the UPV development rate is maximum. The method and UPV monitoring device used in this study is promising for the setting assessment of concrete, particularly for HSC.

Retrofit Design of RC Column by Displacement-Based-Design Method (변위기반설계법에 의한 철근콘크리트 기둥의 보강설계)

  • Lim, Cheong-Kweon;Kwon, Min-Ho;Ha, Keum-Hee;Kim, Jin-Sup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.6
    • /
    • pp.2804-2811
    • /
    • 2012
  • In this study, It is developed a retrofitting procedure of RC column with rectangular section to archive the target displacement at failure. Nonlinear behavior of the column is considered as the equivalent linear system. First, target displacement is determined, and then elastic displacement spectrum is constructed to estimate the equivalent natural vibration period of the SDOF system. After natural vibration period is determined, required strength is calculated using secant stiffness based on the mass of system. In accordance with, obtained force-displacement relationship through non-linear fiber based section analysis, retrofit design was carried out to meet required strength. As a result, retrofitted RC column can confirm that the improved seismic performance. It is observed that the proposed design procedure can be applicable to seismic retrofitting design of columns.