• Title/Summary/Keyword: 콘크리트침목

Search Result 37, Processing Time 0.022 seconds

Effects of Transverse Cracks on Stress Distributions of Continuously Reinforced Concrete Tracks Subjected to Train Loads (연속철근 콘크리트궤도의 횡균열이 열차 하중에 의한 응력 분포에 미치는 영향)

  • Bae, Sung Geun;Choi, Seongcheol;Jang, Seung Yup;Cha, Soo Won
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.5
    • /
    • pp.355-364
    • /
    • 2014
  • The restrained volume changes of concrete due to variations of temperature and moisture produce transverse cracks in continuously reinforced concrete tracks (CRCTs). Such cracks are known to significantly affect the behaviors and long-term performance of CRCT. To investigate the effects of the transverse cracks on the behavior of CRCT and to develop more reasonable maintenance standards for cracks, in this study, the stress distribution of the track concrete layers (TCL) and the hydraulically stabilized base course (HSB) with transverse cracks were numerically predicted by a three dimensional finite element analysis when CRCT was subjected to train loads. The results indicate that the bending stresses of TCL and vertical stresses at the interfaces between TCL and HSB increased as the cracks were deepened. In addition, vertical stresses were locally concentrated near reinforcing steel in cracks in TCL when full-depth cracks developed, which may lead to punch-outs in CRCTs. Comparably, the effects of crack width and spacing were not as significant as crack depth. This study indicates that ensuring the long-term performance of CRCTs requires adequate maintenance not only for crack width and spacing but also for crack depth. Our results also show that locating HSB joints between sleepers is beneficial to the long-term performance of CRCTs.

The Effect of Sleeper Space and Support Stiffness in Concrete Track on Vibration of Structure (콘크리트궤도 침목간격과 궤도지지강성이 진동에 미치는 영향)

  • Sung, Deok-Yong;Kim, Sang-Jin;Yang, Tae-Kyoung;Jang, Ki-Sung;Park, Yong-Gul
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.725-732
    • /
    • 2011
  • The vibration resulting from railway operation is transmitted through the tunnel to adjacent buildings and the transmitted vibration radiates structure-borne noise which is causing a lot of public complaints by its negative effects to the buildings near tunnel. This study performed the parametric study about sleeper space and track support stiffness in order to reduce vibration on the concrete track and near structures. In this study, it was compared and performed vibration analysis and field test about these. In addition, as changing the sleeper space and track support stiffness, vibration of the structures was evaluated. Via this study, in terms of reducing the figure of the sleeper space and track support stiffness to the half, as vibrating acceleration transmitted through concrete round is getting reduced, it transmitted through the tunnel was analysed to the same phenomena. In conclusion, suggested track structure into this study, it can be applied to the track structure of existing line, and it is expected to be a new effective anti-vibration method to prevent public complaints.

  • PDF

Effect of Unequal Settlement on Damage of Resilient Sleepers on Concrete Ballast (콘크리트도상 방진침목의 파손에서 부등침하가 미치는 영향)

  • Kim, Jin-Il;Lee, Jee-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.2 s.74
    • /
    • pp.80-88
    • /
    • 2006
  • In the present study damage behavior of resilient sleepers on concrete ballasts is analyzed. Cracks of resilient sleepers in a railway track system are concentrated on inside of blocks to which the tie bars are connected. Finite element analysis is performed by dividing a block into the straight section and the curved section according to the load condition of the resilient sleeper, and limited the interpretation within the range of resilience. In addition, the value of stress obtained from the interpretation was compared with the allowable stress of concrete to determine the safety. According to the result of numerical analysis, compared with the stress before unequal settlement, the tensile stress of the inside of the block increased significantly after the settlement considering the entire block, and the tensile stress of this part exceeded the allowable stress of concrete, so was undesirable in terms of safety. In reality, the arrangement of tensile stiffeners inside blocks connected to tie bars is improper in the design of resilient sleepers, and when unequal settlement occurs, tensile stress increases on this part and consequently causes cracking damage. It is necessary to arrange wire meshes or tensile reinforcing bars in a structurally safe way to reinforce the inside of blocks on which cracks are concentrated.

An Experimental Study on the Longitudinal Resistance Behavior of an Existing Ballastless Steel Plate Girder Bridge (기존 무도상 판형교 궤도의 종저항거동에 대한 실험)

  • Kim, Kyoungho;Hwang, Inyoung;Baek, Inchul;Choi, Sanghyun
    • Journal of The Korean Society For Urban Railway
    • /
    • v.6 no.4
    • /
    • pp.327-337
    • /
    • 2018
  • Since the track of the ballastless steel plate girder bridge is connected to a main girder without a deck and a ballast, the impact generated by train passage is transferred directly to bridge main members, and it can cause frequent damage of the bridge as well as higher noise and vibration level. Applying the CWR (Continuously Welded Rail) technology can reduce this structural problems, and, to this end, it is necessary to understand the characteristics of factors influencing vehicle-track or track-bridge interaction. In this paper, experimental study results are presented for examining the longitudinal resistance characteristics of the track, including a rail fastener, a sleeper fastener, and a track skeleton, installed on a ballastless steel plate girder bridge. The experiment is conducted using a disposed bridge from service, which is transported to a laboratory. The experimental results show that the rail fastener satisfies the performance criteria of the longitudinal resistance presented in KRS TR 0014-15, and the longitudinal resistance of old and new type sleeper fasteners is higher than the values provided in the existing research. Also, the unloaded longitudinal resistance of the ballastless track is between the ballast and the concrete tracks.

Damage Status of Turnout System with Wooden Sleeper of Concrete Track on Urban Transit (도시철도 콘크리트궤도 목침목 분기기의 손상현황)

  • Choi, Jung-Youl;Han, Kyung-Sung;Bong, Jae-Gun;Jang, Cheol-Ju;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.4
    • /
    • pp.379-385
    • /
    • 2019
  • The purpose of this study is to investigate the damage status of wood sleepers on concrete track of urban transit at different locations and to analyze the causes of damages. In addition, the turnout maintenance history during the service period of about 24 years was analyzed in conjunction with the train passing tonnage and that was to compare the current repair history. The most frequent damage components were rail, tie plate, spike and wooden sleeper. And, the damage caused by the defect of the rail fastening system such as spike and tie plate according to the deformation of the wooden sleeper was analyzed as the main type of damage. As a result, the damage of track components of turnout system was on the increase because they are directly affected by the train passing tonnage. The supplementary points of the check sheet for current turnout maintenance were derived and the improvement proposal was suggested based on the research results.

Comparison of Track Vibration Characteristics for Domestic Railway Tracks in the Aspect of Rolling Noise (철도 전동 소음의 관점에서 해석한 국내 철도의 진동 특성 비교)

  • Ryue, Jungsoo;Jang, Seungho
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.2
    • /
    • pp.85-92
    • /
    • 2013
  • An important source of noise from railways is rolling noise caused by wheel and rail vibrations induced by acoustic roughness at the wheel-rail contact. The main contributors to rolling noise are the sleepers, rail, and wheels. In order to analyze and predict rolling noise, it is necessary to understand the vibrating behaviors of railway tracks, as well as of the wheels. In the present paper, theoretical modeling methods for railway track are reviewed in terms of rolling noise; these methods are applied for the three representative types of domestic railway tracks operated: the conventional ballasted track, KTX ballasted track and KTX concrete track. The characteristics of waves propagating along rails are investigated and compared among the types of tracks. The tracks are modeled as discretely supported Timoshenko beams and are compared in terms of the averaged squared amplitude of velocity, which is directly related to the sound radiation from the rails.

Evaluation of Uplift Forces Acting on Fastening Systems at the Bridge Deck End Considering Nonlinear Behaviors of the Fastening Systems (체결장치 비선형 거동을 고려한 교량 단부에서의 체결장치 압상력 평가)

  • Yang, Sin Chu;Kim, Hak Hyung;Kong, Jung Sik
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.4
    • /
    • pp.521-528
    • /
    • 2017
  • In this study, vertical loading tests were conducted to investigate the nonlinear behaviors of the fastening systems that have generally been used in the concrete track of domestic railway lines. Nonlinear load-displacement curve models were derived based on the test results. The uplift forces generated in the fastening systems were evaluated by applying the derived nonlinear models as well as the existing linear models. The influence of the factors on the maximum uplift force of the fastening system was analyzed through a parameter study on the distance between neighboring sleepers, the horizontal distance between the center of the bearing and the nearest fastening system from the deck end, and the height of the bridge girder. From the evaluation results it is known that, for economical track and bridge design, due to deck end deformation, it is necessary to consider the nonlinear behavior of the fastening system in the calculation of the uplift force of the fastening systems.