• Title/Summary/Keyword: 콘크리트라이닝

Search Result 233, Processing Time 0.023 seconds

Case Study on the Impact-Echo Method for Tunnel Safety Diagnosis (터널 안전진단을 위한 충격반향법 사례 연구)

  • Shin, Sung-Ryul;Jo, Cheol-Hyun
    • Tunnel and Underground Space
    • /
    • v.19 no.1
    • /
    • pp.19-30
    • /
    • 2009
  • For the purpose of determining the thickness of concrete lining and detect of the cavity where may be located behind tunnel lining, IE (Impact-Echo) method it effectively useful in the tunnel safety diagnosis and the quality control during the construction. As a part of case study, we applied IE method to various tunnel structure types such as road tunnel and subway tunnel constructed by NATM (New Austrian Tunnelling Method) and ASSM (American Steel Support Method). As tunnel specifications estimated from this method were compared with coring data, design drawing and other survey results, it was very good agreement with each other. In conclusion, we verified that IE method shows an accurate and reliable result. The conventional interpretation of IE method in frequency domain gives only vertical information at a certain point. However, the interpretation using time-frequency analysis and depth section imaging technique from two dimensional profiling surveys can show more reliable information about structure inside.

The study on mechanical properties of PC panel with steam curing condition (증기양생 조건에 따른 터널 PC 패널의 물리적 특성에 관한 연구)

  • Ma, Sang-Joon;Jang, Pil-Sung;Shiin, Jin-Yong;Nam, Kwan-Woo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.1
    • /
    • pp.17-24
    • /
    • 2008
  • Many problems exist in the current cast in place concrete lining used in domestic tunnel construction. Especially, the crack of tunnel lining brings about a social and economic problem. It has a lot of influence on stability of structure and the fine finish of lining. So enormous repair-work and reinforcement of tunnel lining could occur an running out of government's budget. In our country, there are domestic production enterprises which produce a special pre-cast concrete product, but the technical level of them is still far behind compared to developed countries. Also, optimum steam coring method is important for the production of high quality product. But there is no regulation of steam curing method in our country. This study is to investigate the properties of PC panel according to the variation of steam curing conditions such as presteaming time and rate of temperature rise. The result shows that the optimum presteaming time of steam curing method in PC panel is more than 1 hour and the desirable rate of temperature in curing chamber is about $20^{\circ}C/hr$.

  • PDF

An Estimation of the Temperature-dependent Thermal Conductivity for Hybrid-fiber Reinforced Shield Tunnel Lining (하이브리드 섬유보강 쉴드터널 라이닝의 온도의존적 열전도도 추정)

  • Lee, Chang Soo;Kim, Yong Hyok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.4
    • /
    • pp.99-106
    • /
    • 2012
  • This study presents estimation method of temperature-dependent thermal conductivity by using solution of inverse heat conduction problem. Time and depth temperature distribution data from full-scale fire test were used for estimating temperature-dependent thermal conductivity on hybrid-fiber reinforced shield tunnel lining. At short heating time, estimated thermal conductivity sharply decreased within $100^{\circ}C$. On the other hand, it reflected thermal properties of concrete and effect of steel fiber at heating time of measured maximum heating temperature. Thus arbitrary time should be determined to estimate temperature-dependent thermal conductivity in time zone of measured maximum heating temperature. Estimated temperature-dependent thermal conductivity is similar to results of other study.

Tensile strength evaluation of SFRC subjected to high temperature using double punch test (DPT 실험을 이용한 고온노출된 강섬유보강콘크리트의 인장강도 평가)

  • Moon, Do-Young;Chang, Soo-Ho;Bae, Gyu-Jin;Lee, Gyu-Pil;Kim, Hee-Sung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.1
    • /
    • pp.1-11
    • /
    • 2013
  • Steel fiber-reinforced concrete (SFRC) is widely used for tunnel lining structure such as shot-crete in NATM tunnel and segment in TBM tunnel. In tunnel fire accidents, structural performance of a lining is very important because the lining is the structure that directly exposed to fire. In this study, the effects of high temperatures, mix ratios and types on failure pattern, DPT tensile strength and coefficient of variation were investigated through Double Punch Tests (DPT) of SFRC subjected to high temperatures. In the results, it is confirmed that the residual DPT tensile strength increases as for SFRC and this is more in SFRC with higher mix ratio. But, the equation for evaluation of DPT tensile strength does not involve the number of failure surfaces SFRC specimens subjected to high temperatures, therefore, it is required to investigate more fracture energy in DPT tests.

Evaluation of rock load based on critical shear strain concept on tunnels (한계전단변형률 개념을 이용한 터널의 지반이완하중 평가)

  • Kim, Jung-Joo;Lee, Jae-Kook;Kim, Jong-Uk;Yoo, Han-Kyu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.6
    • /
    • pp.637-652
    • /
    • 2013
  • After studying the characteristics of three different evaluation methods of rock load; namely theoretical method, empirical method and numerical method, there were too many limitations for them to be applied on tunnels. Therefore, in this research paper, the method based on numerical analysis is selected to use as this method is the most reasonable one since it considers all parameters that are necessary for rock load estimations, and it also considers the interaction between ground and tunnel support. The critical shear strain concept formulated by Sakurai (1981) was used in order to measure exact rock load values based on numerical analysis. Evaluation on a Level 1 rock load height, which is depicted by the stable region in the graph shows that rock load is not affecting between ground grade 1~3, and it was evaluated that the fourth and fifth grades show less values of rock load height which led to the conclusion of a more economical design of concrete lining.

An Experimental Study of Polypropylene Fiber for the Prevention of Explosive Spalling of Tunnel Concrete Lining (터널 콘크리트 라이닝 폭열 방지를 위한 폴리프로필렌 섬유 혼입율 분석 연구)

  • Kim, Nag Young;Shim, Jae Won;Shim, Jong Sung;Won, Jong Phil
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.7 no.4
    • /
    • pp.323-333
    • /
    • 2005
  • Recently the fire is happening at the tunnel and underground - structure internationally. We are socially the economy the actual circumstances which serious loss is happening due to an fire occurrence when fire happened which is closed like tunnel and underground - structure, the collapse from the burglar degradation of strength of tunnel concrete lining and human life damage happen. It causes big problem while the long time disconnects a traffic network. While the fire happened in this research at the tunnel, the paper construct a basis data to deduce the specification regulation about stability of tunnel concrete lining. In this paper, the experiment was carried out for the prevention of explosive spalling of tunnel to use a reinforced Polypropylene concrete which mixes a Polypropylene which are known for the thing by being efficient at a protect of explosive spalling of the concrete. According to the firproof test result of reinforced Polypropylene admixture mortar, Polypropylene admixture of prevention of explosive spalling analyzed 0.2%-0.25%.

  • PDF

The structural analysis and design methods considering joint bursting in the segment lining (조인트 버스팅을 고려한 세그먼트 라이닝 구조해석 및 설계방법)

  • Kim, Hong-Moon;Kim, Hyun-Su;Jung, Hyuk-Il
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.6
    • /
    • pp.1125-1146
    • /
    • 2018
  • Segment lining applied to the TBM tunnel is mainly made of concrete, and it requires sufficient structural capacity to resist loads received during the construction and also after the completion. When segment lining is design to the Limit State Design, both Ultimate Limit State (ULS) and Service Limit State (SLS) should be met for the possible load cases that covers both permanent and temporary load cases - such as load applied by TBM. When design segment lining, it is important to check structural capacity at the joints as both temporary and permanent loads are always transferred through the segment joints, and sometimes the load applied to the joint is high enough to damage the segment - so called bursting failure. According to the various design guides from UK (PAS 8810, 2016), compression stress at the joint surface can generate bursting failure of the segment. This is normally from the TBM's jacking force applied at the circumferential joint, and the lining's hoop thrust generated from the permanent loads applied at the radial joint. Therefore, precast concrete segment lining's joints shall be designed to have sufficient structural capacity to resist bursting stresses generated by the TBM's jacking force and by the hoop thrust. In this study, bursting stress at the segment joints are calculated, and the joint's structural capacity was assessed using Leonhardt (1964) and FEM analysis for three different design cases. For those three analysis cases, hoop thrust at the radial joint was calculated with the application of the most widely used limit state design codes Eurocode and AASHTO LRFD (2017). For the circumferential joints bursting design, an assumed TBM jack force was used with considering of the construction tolerance of the segments and the eccentricity of the jack's position. The analysis results show reinforcement is needed as joint bursting stresses exceeds the allowable tensile strength of concrete. This highlights that joint bursting check shall be considered as a mandatory design item in the limit state design of the segment lining.

Structural performance evaluation of precast concrete segment using synthetic fibres (프리캐스트 콘크리트 세그먼트의 합성섬유 보강재 적용에 따른 구조적 성능 평가)

  • Lee, Hoseong;Kim, Changyong;Lee, Sean S.;Kim, Seungjun;Lee, Kyeongjin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.2
    • /
    • pp.469-483
    • /
    • 2018
  • Steel bars have been widely used as the primary reinforcement for Precast Segmental Concrete Lining for TBM Tunnels. Previously, studies have been carried out to gauge the potential for steel fiber reinforcement to replace the use of steel bar reinforcements in the segmental lining to reduce the amount of the steel bar reinforcement. Steel fiber reinforcements have been investigated and widely applied to SFRC TBM linings to improve the constructability of SFRC TBM linings worldwide. However, the steel fiber reinforcement often caused punctures to the water membranes inside tunnel lining and had long-term durability deterioration issues caused by steel corrosion, as well as cosmetic problems. Therefore, this paper sought to gauge the potential of synthetic fiber reinforcements, which have proven to be very attractive substitutes for steel fiber reinforcements. This study analyzed the performance of both steel and synthetic fiber reinforcements in segmental linings and evaluated the applicability of the fiber reinforcements to the TBM Precast Concrete Segmental Linings of TBM tunnels. As a conclusion, this study demonstrates that the potential use of steel and synthetic fibers in various combination, can substitute the rebar reinforcement in the concrete mix for segmental concrete linings.

An Experimental Study on the Thermal Property of Concrete under the Load Ratio Condition in Fire (화재시 하중재하에 따른 콘크리트의 열적특성에 관한 실험적 연구)

  • Kim, Hyung-Jun;Kim, Heung-Youl;Park, Kyung-Hun;Jung, Jae-Young;Kwan, Ki-Hyuk
    • Fire Science and Engineering
    • /
    • v.23 no.6
    • /
    • pp.66-74
    • /
    • 2009
  • When a fire occurs, the concrete structure's strength decreases by the increasing temperature under the fire in certain condition of constant load. And, the ratio of the axial force is changed by such decreased strength so that the structure is deformed. In this research, considering such case, we have conducted an actual fire test for the concrete lining with constant loading condition and various fire conditions. The specimen adopts the shape condition for small practical specimen defined by the EFNARC and we used 24MPa, 40MPa and 50MPa to analyze the thermal properties by the strength. The ratio of loading is imposed by a certain loading condition based on 20% and 40% of the sectional stress in concrete and MHC Fire is selected to realize the thermal impact of the concrete by rapid increasing temperature. As the result of the experiment, in the same ratio of loading, the 50MPa specimen shows more cracks and spalling as time goes on. The area damaged by the fire, according to the functional criteria of the concrete lining under the fire in ITA, does not satisfy with the standard in lack of 50mm depth from the heating surface at total 200mm lining.