• Title/Summary/Keyword: 콘빔 CT

Search Result 40, Processing Time 0.035 seconds

ERUPTION PATTERN OF THE MANDIBULAR FIRST MOLAR USING THE CONE BEAM CT (Cone Beam CT를 이용한 하악 제 1대구치 맹출 양상에 관한 연구)

  • Shin, Jeong-Keun;Kim, Jae-Gon;Baik, Byeong-Ju;Yang, Yeon-Mi;Jeong, Jin-Woo
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.36 no.3
    • /
    • pp.325-336
    • /
    • 2009
  • The purpose of this study was to investigate the eruption pattern of the mandibular first molar in sagittal, frontal and horizontal views using the cone beam CT scanning. CT images were obtained from healthy 83 children (42 boys, 41 girls) between 3 to 10 years of age with a normal dentition according to Nolla stage. 1. In the frontal and horizontal view, the intermolar width decreased continuously with stage and slightly increased at the last stage. 2. In the sagittal and frontal view, eruption distances from occlusal plane were observed the largest change between stage 5 and 7. 3. In the horizontal and sagittal view, mandibular first molar from distal surface of primary second molar moved distally between stage 4 and 6. 4. In the sagittal view, angle from occlusal plane to mesio-distal axis increased between stage 4 and 8. 5. In the frontal view, angle from occlusal plane to bucco-lingual axis increased continuously during all stage. 6. In the horizontal view, angle from midsagittal plane to long axis increased between stage 5 and 8.

  • PDF

Comparison of Volumes between Four-Dimensional Computed Tomography and Cone-Beam Computed Tomography Images using Dynamic Phantom (호흡동조전산화단층촬영과 콘빔전산화단층촬영의 팬텀 영상 체적비교)

  • Kim, Seong-Eun;Won, Hui-Su;Hong, Joo-Wan;Chang, Nam-Jun;Jung, Woo-Hyun;Choi, Byeong-Don
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.28 no.2
    • /
    • pp.123-130
    • /
    • 2016
  • Purpose : The aim of this study was to compare the differences between the volumes acquired with four-dimensional computed tomography (4DCT)images with a reconstruction image-filtering algorithm and cone-beam computed tomography (CBCT) images with dynamic phantom. Materials and Methods : The 4DCT images were obtained from the computerized imaging reference systems (CIRS) phantom using a computed tomography (CT) simulator. We analyzed the volumes for maximum intensity projection (MIP), minimum intensity projection (MinIP) and average intensity projection (AVG) of the images obtained with the 4DCT scanner against those acquired from CBCT images with CT ranger tools. Results : Difference in volume for node of 1, 2 and 3 cm between CBCT and 4DCT was 0.54~2.33, 5.16~8.06, 9.03~20.11 ml in MIP, respectively, 0.00~1.48, 0.00~8.47, 1.42~24.85 ml in MinIP, respectively and 0.00~1.17, 0.00~2.19, 0.04~3.35 ml in AVG, respectively. Conclusion : After a comparative analysis of the volumes for each nodal size, it was apparent that the CBCT images were similar to the AVG images acquired using 4DCT.

  • PDF

Assessment of accessory mandibular canal in mandibular third molars using cone-beam computed tomography (콘빔 CT를 이용한 하악 제3대구치부의 부하악관 평가)

  • Cho, Bong-Hae;Jung, Yun-Hoa
    • The Journal of the Korean dental association
    • /
    • v.52 no.12
    • /
    • pp.753-761
    • /
    • 2014
  • Purpose: This study was performed to examine distribution of accessory mandibular canal and its characteristics in mandibular third molars. Materials and methods: A total of 251 subjects (166 males and 85 females) having mandibular third molars bilaterally were included in the study. Cone-beam computed tomographic images were reviewed for bifid or trifid accessory mandibular canal. The prevalence of accessory mandibular canal was evaluated according to gender, side and its branching type. Proximity and crosssectional position of accessory mandibular canal to mandibular third molar was analyzed. Results: Accessory mandibular canals were found in 66 (26.3%) of 251 patients and 86 (17.1%) of 502 hemi-mandibles. Gender and sides showed no statistically significant differences in prevalence. Retromolar canal (46.1%) was the most common branching type. Proximity of accessory canal to mandibular third molars showed mean distance of 2.8 mm from third molar and a statistically significant difference was found among types of accessory canal. Dental canal was the closest to tooth among branching types and closer to tooth than main canal. On cross-sectional view, accessory canal was generally located on buccal side of mandibular third molar. Conclusion: Accessory mandibular canal was common and well detected with cone-beam computed tomography. Their localization is significant in all anesthetic and surgical procedures involving mandibular third molars.

Positional change of the condylar heads after wearing complete denture on dental cone beam CT (치과용 콘빔 CT영상에서 총의치 장착 후 하악과두의 위치변화)

  • Lee, Bong-Ho;Kim, Jae-Duk;Chung, Chae-Heon
    • Imaging Science in Dentistry
    • /
    • v.38 no.1
    • /
    • pp.23-27
    • /
    • 2008
  • Purpose: The aim of this study was to evaluate the change in the position of the mandibular condyle within articular fossa by a CBCT after wearing complete denture (CD). Materials and Methods: CBCT of 34 temporomandibular joints were taken from 9 male and 8 female patients with CB $Mercuray^{TM}$ (Hitachi, Japan) before and after wearing a CD for rehabilitation. Position of mandibular condyle within articular fossa at centric occlusion was evaluated with $Vimplant2.0^{TM}$ (CyberMed, Korea) on the central parasagittal view and curved panoramic coronal view of the condylar head. A statistical evaluation was done with SPSS. Results: The range of anteroposterior positional rate (AP) of condylar head within articular fossa was -16-5 and -10-12 respectively on the right and left sides. Before wearing CD, the AP rate showed discrepancy between right and left sides (p<0.05). After wearing CD, both condyles showed a tendency to decrease in posterior condylar position (right side; p<0.05). The average discrepancy between right and left side in mediolateral positional rate (MD) was 15.5 and 4.5 respectively before and after wearing CD. The improvement was observed in mediolateral relationship of both condylar heads after wearing CD (p< 0.01). Before wearing CD, the average horizontal angle of long axis of condylar head was $79.6{\pm}2.7^{\circ}\;and\;80.1{\pm}5.7^{\circ}$ respectively on the right and left sides. After wearing CD, both condyles were rotated in the same direction in average on axial plane. Conclusion: We observed with CBCT the significant clinical evidence in case of positional change of mandibular condyle after wearing complete denture.

  • PDF

Patient Position Verification and Corrective Evaluation Using Cone Beam Computed Tomography (CBCT) in Intensity.modulated Radiation Therapy (세기조절방사선치료 시 콘빔CT (CBCT)를 이용한 환자자세 검증 및 보정평가)

  • Do, Gyeong-Min;Jeong, Deok-Yang;Kim, Young-Bum
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.21 no.2
    • /
    • pp.83-88
    • /
    • 2009
  • Purpose: Cone beam computed tomography (CBCT) using an on board imager (OBI) can check the movement and setup error in patient position and target volume by comparing with the image of computer simulation treatment in real.time during patient treatment. Thus, this study purposed to check the change and movement of patient position and target volume using CBCT in IMRT and calculate difference from the treatment plan, and then to correct the position using an automated match system and to test the accuracy of position correction using an electronic portal imaging device (EPID) and examine the usefulness of CBCT in IMRT and the accuracy of the automatic match system. Materials and Methods: The subjects of this study were 3 head and neck patients and 1 pelvis patient sampled from IMRT patients treated in our hospital. In order to investigate the movement of treatment position and resultant displacement of irradiated volume, we took CBCT using OBI mounted on the linear accelerator. Before each IMRT treatment, we took CBCT and checked difference from the treatment plan by coordinate by comparing it with the image of CT simulation. Then, we made correction through the automatic match system of 3D/3D match to match the treatment plan, and verified and evaluated using electronic portal imaging device. Results: When CBCT was compared with the image of CT simulation before treatment, the average difference by coordinate in the head and neck was 0.99 mm vertically, 1.14 mm longitudinally, 4.91 mm laterally, and 1.07o in the rotational direction, showing somewhat insignificant differences by part. In testing after correction, when the image from the electronic portal imaging device was compared with DRR image, it was found that correction had been made accurately with error less than 0.5 mm. Conclusion: By comparing a CBCT image before treatment with a 3D image reconstructed into a volume instead of a 2D image for the patient's setup error and change in the position of the organs and the target, we could measure and correct the change of position and target volume and treat more accurately, and could calculate and compare the errors. The results of this study show that CBCT was useful to deliver accurate treatment according to the treatment plan and to increase the reproducibility of repeated treatment, and satisfactory results were obtained. Accuracy enhanced through CBCT is highly required in IMRT, in which the shape of the target volume is complex and the change of dose distribution is radical. In addition, further research is required on the criteria for match focus by treatment site and treatment purpose.

  • PDF

Study of Absorbed Dose and Effective Dose for Prostate Cancer Image Guided Radiation Therapy using kV Cone Beam Computed Tomography (kV Cone Beam Computed Tomography (CBCT)를 이용한 전립선암 영상유도방사선치료 시 흡수선량 및 유효선량에 관한 고찰)

  • Na, Jong-Eok;Lee, Do-Geun;Kim, Jin-Soo;Baek, Geum-Mun;Kwon, Kyung-Tae
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.21 no.2
    • /
    • pp.67-74
    • /
    • 2009
  • Purpose: To evaluate the results of absorbed and effective doses using two different modes, standard mode (A-mode) and low-dose mode (B-mode) settings for prostate cancer IGRT from CBCT. Materials and Methods: This experimental study was obtained using Clinac iX integrated with On Board Imager (OBI) System and CBCT. CT images were obtained using a GE Light Speed scanner. Absorbed dose to organs from ICRP recommendations and effective doses to body was performed using A-mode and B-mode CBCT. Measurements were performed using a Anderson rando phantom with TLD-100 (Thermoluminescent dosimeters). TLD-100 were widely used to estimate absorbed dose and effective dose from CBCT with TLD System 4000 HAWSHAW. TLD-100 were calibrated to know sensitivity values using photon beam. The measurements were repeated three times for prostate center. Then, Evaluations of effective dose and absorbed dose were performed among the A-mode and B-mode CBCT. Results: The prostate absorbed dose from A-mode and B mode CBCT were 5.5 cGy 1.1 cGy per scan. Respectively Effective doses to body from A mode and B-mode CBCT were 19.1 mSv, 4.4 mSv per scan. Effective dose from A-mode CBCT were approximately 4 times lower than B-mode CBCT. Conclusion: We have shown that it is possible to reduce the effective dose considerably by low dose mode(B-mode) or lower mAs CBCT settings for prostate cancer IGRT. Therefore, we should try to select B-mode or low condition setting to decrease extra patient dose during the IGRT for prostate cancer as possible.

  • PDF

A Study on the Additional Radiation Exposure Dose of kV X-ray Based Image Guided Radiotherapy (kV X선 기반 영상유도방사선치료의 추가 피폭선량에 관한 연구)

  • Gha-Jung Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.7
    • /
    • pp.1157-1164
    • /
    • 2023
  • This study measures the additional dose for each treatment area using kV X-ray based OBI (On-Board Imager) and CBCT (Cone-Beam CT), which have excellent spatial resolution and contrast, and evaluates the adequacy and stability of radiation management aspects of IGRT. The subjects of the experiment were examined with OBI and CBCT attached to a linear accelerator (Clinac IX), and ring-shaped Halcyon CBCT under imaging conditions for each treatment area, and the dose at the center was measured using an ion chamber. OBI single fraction dose was measured as 0.77 mGy in the head area, 3.04 mGy in the chest area, and 7.19 mGy in the pelvic area. The absorbed doses from the two devices, Clinac IX CBCT and Halcyon CBCT, were measured to be similar in the pelvic area, at 70.04 mGy and 70.45 mGy. and in chest CBCT, the Clinac IX absorbed dose (70.05 mGy) was higher than the Halcyon absorbed dose (21.01 mGy). The absorbed dose to the head area was also higher than that of Clinac IX (9.08 mGy) and Halcyon (5.44 mGy). In kV X-ray-based IGRT, additional radiation exposure due to photoelectric absorption may affect the overall volume of the treatment area, and caution is required.

The Effect of Patients Positioning System on the Prescription Dose in Radiation Therapy (방사선치료 시 자세확인시스템이 처방선량에 미치는 영향)

  • Kim, Jeong-Ho;Bae, Seok-Hwan
    • Journal of radiological science and technology
    • /
    • v.40 no.4
    • /
    • pp.613-620
    • /
    • 2017
  • Planning dose must be delivered accurately for radiation therapy. Also, It must be needed accurately setup. However, patient positioning images were need for accuracy setup. Then patient positioning images is followed by additional exposure to radiation. For 45 points in the phantom, we measured the doses for 6 MV and 10 MV photon beams, OBI(On Board Imager) and CBCT(Conebeam Computed Tomography) using OSLD(Optically Stimulated Luminescent Dosimeter). We compared the differences in the cases where posture confirmation imaging at each point was added to the treatment dose. Also, we tried to propose a photography cycle that satisfies the 5% recommended by AAPM(The American Association of Physicists in Medicine). As a result, a maximum of 98.6 cGy was obtained at a minimum of 45.27 cGy at the 6 MV, a maximum of 99.66 cGy at a minimum of 53.34 cGy at the 10 MV, a maximum of 2.64 cGy at the minimum of 0.19 cGy for the OBI and a maximum of 17.18 cGy at the minimum of 0.54 cGy for the CBCT.The ratio of the radiation dose to the treatment dose is 3.49% in the case of 2D imaging and the maximum is 22.65% in the case of 3D imaging. Therefore, tolerance of 2D image is 1 exposure per day, and 3D image is 1 exposure per week. And it is need to calculation of separate in the parallelism at additional study.

Comparison of using CBCT with CT simulator for radiation dose of treatment planning (CBCT와 Simulation CT를 이용한 치료계획의 선량비교)

  • Cho, jung-keun;Kim, dae-young;Han, tae-jong
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2009.05a
    • /
    • pp.1159-1166
    • /
    • 2009
  • The use of cone-beam computed tomography(CBCT) has been proposed for guiding the delivery of radiation therapy. A kilovoltage imaging system capable of radiography, fluoroscopy, and cone-beam computed tomography(CT) has been integrated with a medical linear accelerator. A standard clinical linear accelerator, operating in arc therapy mode, and an amorphous-silicon (a-Si) with an on-board electronic portal imager can be used to treat palliative patient and verify the patient's position prior to treatment. On-board CBCT images are used to generate patient geometric models to assist patient setup. The image data can also, potentially, be used for dose reconstruction in combination with the fluence maps from treatment plan. In this study, the accuracy of Hounsfield Units of CBCT images as well as the accuracy of dose calculations based on CBCT images of a phantom and compared the results with those of using CT simulator images. Phantom and patient studies were carried out to evaluate the achievable accuracy in using CBCT and CT stimulator for dose calculation. Relative electron density as a function of HU was obtained for both planning CT stimulator and CBCT using a Catphan-600 (The Phantom Laboratory, USA) calibration phantom. A clinical treatment planning system was employed for CT stimulator and CBCT based dose calculations and subsequent comparisons. The dosimetric consequence as the result of HU variation in CBCT was evaluated by comparing MU/cCy. The differences were about 2.7% (3-4MU/100cGy) in phantom and 2.5% (1-3MU/100cGy) in patients. The difference in HU values in Catphan was small. However, the magnitude of scatter and artifacts in CBCT images are affected by limitation of detector's FOV and patient's involuntary motions. CBCT images included scatters and artifacts due to In addition to guide the patient setup process, CBCT data acquired prior to the treatment be used to recalculate or verify the treatment plan based on the patient anatomy of the treatment area. And the CBCT has potential to become a very useful tool for on-line ART.)

  • PDF

Comparison of the buccolingual inclination in alveolar bone and tooth using dental CBCT (치과용 콘빔전산화단층영상에서 치조골과 치아의 협설경사 비교)

  • Kim, Sung-Eun;Kim, Jin-Soo;Kim, Jae-Duk
    • Imaging Science in Dentistry
    • /
    • v.38 no.1
    • /
    • pp.17-22
    • /
    • 2008
  • Purpose: It is important to determine the bucco-lingual inclination of implants on radiographs before the implant surgery. The purpose of this study was to compare the buccolingual inclination in alveolar bone and the tooth with dental cone beam CT and to prepare the standard for the buccolingual inclination of implant. Materials and Methods: Axial, panoramic, and buccolingually sectioned images of 80 implant cases with stent including straight marker using CB $Mercuray^{TM}$ (Hitachi, Japan) were evaluated. The comparison of the buccolingual inclination of remained alveolar bone with the tooth and the marker on butcolingually sectioned views was performed statistically. Results: The average buccolingual inclination of remained alveolar bone and tooth was $82.8{\pm}4.6^{\circ}\;and\;85.8{\pm}4.7^{\circ}$ (p<0.05, r=0.96) at the 1st molar area and $76.4{\pm}1.7^{\circ}\;and\;82.7{\pm}1.7^{\circ}$ respectively (p>0.05, r=0.12) at the 2nd premolar area in upper jaw. The average buccolingua1 inclination of remained alveolar bone and tooth was $81.3{\pm}8.3^{\circ}\;and\;87.5{\pm}6.3^{\circ}$ (p>0.05, r=0.85) at the lower 2nd premolar area and $94.3{\pm}6.6^{\circ}\;and\;93.3{\pm}7.2^{\circ}$ respectively (p>0.05, r=0.91) at the 1st molar area in lower jaw. The inclinations of markers were very different from those of remained bone at the most of areas except the upper 2nd premolar area (r=0.79). Conclusion: We recommend dental CBCT analysis for determining the buccolingual inclination of dental implant, because of significant difference, in average, between the bucco1ingual inclination of remained alveolar bone and tooth.

  • PDF