• Title/Summary/Keyword: 코마수차

Search Result 21, Processing Time 0.018 seconds

Deep UV 마이크로 리소그라피를 위한 새로운 4-반사경 광학계에 관한 수차해석

  • 김종태;이상수
    • Korean Journal of Optics and Photonics
    • /
    • v.4 no.1
    • /
    • pp.1-8
    • /
    • 1993
  • A design of four-mirror optical system with reduction magnification 5X for deep UV ($\lambda$=248 nm of KrF excimer laser) submicron lithography is presented. Initially by using the paraxial quantities, the domain of solution for $t=d_1+d_2+d_3$<0 (d;: distance between the mirror $c_i$ and $c_{i+1}$ is found for the system which is free from the four off-axial Seidel first order aberrations that are coma, astigmatism, field curvature, and distortion. The solution with $d_5$=2.95 (normalized with respect to $c_i$= -1) is choosen and the aspherization is carried out to the spherical mirror surfaces ($c_3$ and $c_4$ in order to reduce the axial and residual off-axial higher order aberrations. The numerical aperture of the final system is as large as 0.4, which gives Rayleigh resolution of 0.38 $\mu\textrm{m}$.

  • PDF

Five Mirror System Derived From the Numerical Solutions of all Zero 3rd Order Aberrations and Zero 5th Order Spherical Aberration for DUV Optical Lithography (모든 3차 수차와 5차 구면수차를 제거하여 얻은 극자외선 리소그라피용 5-반사광학계)

  • 이동희
    • Korean Journal of Optics and Photonics
    • /
    • v.4 no.4
    • /
    • pp.373-380
    • /
    • 1993
  • A five mirror system with a reduction magnification(M=+1/5) is designed for DUV optical lithography. Initially, numerical solutions of all zero 3rd order aberrations and zero 5th order spherical aberration are obtained for the spherical mirror system. Next, by the optimization method, the aspherization is carried out to the two spherical mirrors to obtain a system that has as less residual aberrations, higher NA and improved MTF as possible. We have finally obtained the system of which NA is 0.45 and the resolution is about 500 cycles/mm at the 50% MTF value criterion and the depth of focus of $1.0{\mu}m$ for the nearly incoherent illumination$({\sigma}=1.0)$ and the wavelength of 0.248 m(KrF excimer laser line).

  • PDF

Holosymmetric 4-Mirror Optical System(Unit Maginification) for Deep Ultraviolet Lithography Obtained from the Exact Solution of All Zero Third Order Aberrations (모든 3차 수차를 제거하여 얻은 극자외선 Lithography용 4-반사경 Holosymmetric System(배율=1))

  • 조영민
    • Korean Journal of Optics and Photonics
    • /
    • v.4 no.3
    • /
    • pp.252-259
    • /
    • 1993
  • A holosymmetric four-mirror system with unit magnification is designed for use in the micro-lithography using a deep ultraviolet wavelength of $0.248 {\mu}m$(KrF excimer laser line). In the holosymmetric system all orders of coma and distortion are zero. By applying this principle to the 4-spherical mirror system, we have obtained only one exact solution for the unit magnification holosymmetric four-spherical mirror system with all zero third order aberrations. For correction of the residual higher order aberrations of the system, aspherization is introduced keeping the holosymmetric properties. We have obtained near diffraction-limited performance for the wavelength of 0.248 pm within N.A. of 0.33 and image field diameter of 7.6 mm.

  • PDF

Gaussian Bracket Expressions of Aplanatic and Achromatic Conditions for Telephoto Type Telescope Objective Derived from the Numerical Solution (Aplanat조건과 Achromatwhrjs의 Gauss괄호 표현과 Telephoto형 망언경 대물렌즈의 설계)

  • 임천석
    • Korean Journal of Optics and Photonics
    • /
    • v.4 no.3
    • /
    • pp.243-251
    • /
    • 1993
  • We have derived Gaussian bracket expressions of aplanatic and achromatic conditions and obtained the numerical solutions for each of two modules of the telephoto type telescope objective free from the Seidel first order spherical aberration, coma, and longitudinal chromatic aberration. The system which is for use in sighting a target is optimized within the resolution of eyes. The objective lens satisfying the aplanatic and achromatic condition has f/8.5 with the half field angle 0.$3^{\circ}$, and the telephoto ratio is 0.839 with the focal length of 30 cm.

  • PDF

Optical Design of a High-numerical-aperture Objective with a Reflective Focal Reducer (반사형 Focal Reducer를 가지는 높은 개구수의 대물렌즈 설계)

  • Jong Ung Lee
    • Korean Journal of Optics and Photonics
    • /
    • v.34 no.6
    • /
    • pp.248-260
    • /
    • 2023
  • A 0.5-numerical-aperture (NA) refractive-reflective objective, composed of a low-NA refractive and a reflective focal reducer, is designed. A 0.25-NA Lister objective is used for the refractive. A two-spherical-mirror system, corrected for spherical aberration, coma, and astigmatism is used for the reflective focal reducer. In spite of high NA, the refractive-reflective objective has an 18-mm working distance and improved imaging performance, compared to the 0.25-NA Lister objective.

Aberration analysis of telephoto lens system by using thin lens approximation (얇은 렌즈 근사를 이용한 Telephoto Lens계의 수차해석)

  • 문준석;이종웅;박성찬
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.4
    • /
    • pp.275-282
    • /
    • 2002
  • We derived analytic formulae for the correction of spherical aberration, coma, and axial color of a two-components lens system consisted of a cemented doublet and a singlet by using the thin lens approximation. The correction formulae were applied to design a telephoto lens system. We examined two kinds of glass combinations in the design, one was crown-flint-crown combination and the other was flint-crown-flint combination. We found two kinds of achromatic aplanat solutions in the crown-flint-crown combination. For the case of flint-crown-flint combination, there were also two kinds of solutions, but their configurations are not useful in practice.

Optical design of three-mirror telescope system for infra-red and visible imaging (적외선 및 가시광선 결상용 3반사망원경계의 설계)

  • 이종웅;홍경희;권우근
    • Korean Journal of Optics and Photonics
    • /
    • v.7 no.3
    • /
    • pp.183-190
    • /
    • 1996
  • To design three-mirror telescope system (F/8, 120 inch in focal length) for visible and infra-red band imaging, methods for power configuring and correction of the third order aberrations were studied. In the design of the telescope system, a three-mirror system corrected for spherical aberration, coma, and astigmatism was used for infra-red imaging, and the aberrations were corrected by using conic surfaces. For visible imaging, a singlet corrector lens was appended at the front of the focal plane to correct filed curvature. The telescope system has diffraction limited performance for 10 ${\mu}{\textrm}{m}$ in wavelength within 2.4$^{\circ}$ of field-of-view. In the visible band imaging, the rms spot size of the telescope system is less than 25 ${\mu}{\textrm}{m}$ within 3$^{\circ}$ of field-of-view for monochromatic light, and the telescope system satisfies flat field condition for CCD application.

  • PDF

Optical Design of an Off-Axial-Field Two-Mirror System with a Displaced Stop and a Secondary Mirror (조리개와 제 2거울이 횡이동된 비축시야 2반사 광학계 설계)

  • Nam, Ji-Woo;Lee, Jong-Ung
    • Korean Journal of Optics and Photonics
    • /
    • v.31 no.6
    • /
    • pp.304-313
    • /
    • 2020
  • By using an off-axial field with an inverse Cassegrain system where the aperture stop is at the secondary mirror, the two-mirror system can be used for a wide-field objective. However, aberration corrections in conventional two-mirror systems are limited because the design parameters are too small. In this study, we present a new improved design of the off-axial-field two-mirror system. The new design has an independently displaced aperture stop and a secondary mirror. The new design parameters yield more improvement in correction for 5th-order coma and astigmatism, and better aberration balancing for the whole off-axial field. The spot sizes of the new design system are reduced to half of those for a conventional reference design, and the improvement effects are shown for the whole field evenly.

Raidal Tilt Detection using One Beam and Its Compensation in a High Density Optical Disk Drive (단일 빔을 이용한 고밀도 광 디스크 드라이브의 Radial Tilt 검출 및 보상)

  • Doh, Tae-Yong;Ma, Byung-In;Choi, Byoung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2299-2301
    • /
    • 2001
  • 광 디스크의 용량을 증가시기키 위해선, 레이저 다이오드의 단파장화와 렌즈의 개구수 증가가 수년 동안 시도되어왔다. 불행히도 이러한 노력들은 디스크 틸트(tilt)로 인해 야기되는 코마(coma) 수차로 인한 부작용을 유발하였다. 이런 문제를 해결하기 위해, 램(random access memory, RAM) 디스크의 경우 몇 가지 검출과 보상 방법이 제안되었다. 그러나, 롬(read only memory, ROM) 디스크의 경우 아직까지 뚜렷한 해결책이 제시되지 않고 있다. 본 논문에서는 8분할 광 검출기에 의해 생성되는 차동 위상 검출(differential phase detection, DPD) 신호를 이용한 고밀도 롬 디스크에서 래디얼(radial) 틸트를 검출하는 방법을 제안한다. 3축 렌즈 구동형 액츄에이터(actuator)를 이용하여 개발한 래디얼 틸트 서보로 검출된 래디얼 틸트를 보상한다. 액츄에이터의 회전이 트래킹(tracking) 서보(servo)에 미치는 영향을 소개한다. 끝으로 제안된 방법의 유용성을 고밀도 롬 드라이브에 대한 실험을 통해 검증한다.

  • PDF

Paraboloidal 2-mirror Holosymmetric System with Unit Maginification for Soft X-ray Projection Lithography (연X-선 투사 리소그라피를 위한 등배율 포물면 2-반사경 Holosymmetric System)

  • 조영민;이상수
    • Korean Journal of Optics and Photonics
    • /
    • v.6 no.3
    • /
    • pp.188-200
    • /
    • 1995
  • A design of unit magnification 2-mirror system with high resolution is presented. It is for soft X-ray(wavelength of 13 nm) projection imaging and suitable for preparation of high density semiconductor chip. In general, a holosymmetric system with unit magnification has the advantage that both coma and distortion are completely eliminated. In our holosymmetric 2-mirror system, spherical aberration is addtionally removed by using two identical paraboloidal mirror surfaces and field curvature aberration is also corrected by balancing Petzval sum and astigmatism which depends on the distance between two mirrors, so that the system is a aplanatic flat-field paraboloidal 2-mirror holosymmetric system. This 2-mirror system is small in size, and has a simple configuration with rotational symmetry about optical axis, and has also small central obscuration. Residual finite aberrations, spot diagrams, and diffraction-based MTF's are analyzed for the check of performances as soft X-ray lithography projection system. As a result, the image sizes for the resolutions of$0.25\mum$and $0.18\mum$are 4.0 mm, 2.5 mm respectively, and depths of focus for those are $2.5\mum$, $2.4\mum$respectively. This system should be useful in the fabrication of 256 Mega DRAM or 1 Giga DRAM. DRAM.

  • PDF