• Title/Summary/Keyword: 코로나-19 진단

Search Result 63, Processing Time 0.033 seconds

Comparative Study of Target Genes and Protocols by Country for Detection of SARS-CoV-2 based on Polymerase Chain Reaction (PCR) (중합효소 연쇄반응 기반의 코로나-19 바이러스 검출법에 대한 국가별 목표 유전자 및 프로토콜 비교 연구)

  • Kim, Jin-Hee
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.1
    • /
    • pp.465-474
    • /
    • 2021
  • Corona-19, a disease caused by 'Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)', was declared a global pandemic by the World Health Organization (WHO) in March 2020, and a real-time polymerase chain reaction test is performed as a diagnostic test for screening and confirmation in most countries. However, not only the target genes and protocols differ by countries, but also the procedures for reading the diagnosis results are diverse, so the criteria for confirmed patients differ by country. Therefore, in this review, we discussed the target genes, test techniques, and diagnostic criteria for each country notified by WHO. And the specificity and sensitivity, limits of detection, positive and negative controls, false positive bacteria candidates, and specimens, and the specifics of the control setting were also described. In addition, the characteristics of Korea's test were compared to each country's one. Finally, in order to obtain the same diagnosis result for SARS-CoV-2 in the future, standardized diagnosis methods and result interpretations for Corona-19 diagnosis were proposed.

Performance Analysis of Noisy Group Testing for Diagnosis of COVID-19 Infection (코로나19 진단을 위한 잡음 그룹검사의 성능분석)

  • Seong, Jin-Taek
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.2
    • /
    • pp.117-123
    • /
    • 2022
  • Currently the number of COVID-19 cases is increasing rapidly around the world. One way to restrict the spread of COVID-19 infection is to find confirmed cases using rapid diagnosis. The previously proposed group testing problem assumed without measurement noise, but recently, false positive and false negative cases have occurred during COVID-19 testing. In this paper, we define the noisy group testing problem and analyze how much measurement noise affects the performance. In this paper, we show that the group testing system should be designed to be less susceptible to measurement noise when conducting group testing with a low positive rate of COVID-19 infection. And compared with other developed reconstruction algorithms, our proposed algorithm shows superior performance in noisy group testing.

How accurate are rapid diagnostic tests for covid-19? (코로나19 신속진단검사는 얼마나 정확한가?)

  • Yeo, In-Kwon
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.3
    • /
    • pp.435-443
    • /
    • 2022
  • In this paper, using Covid-19 diagnostic data provided by the Korea Disease Control and Prevention Agency (KDCA), we examine the probability of confirmed cases and the probability of actually being confirmed when the rapid test is negative according to the sensitivity and specificity of the rapid diagnostic kit. When we know the conditional probability of confirmation given a positive test, we induce the relationship between sensitivity and specificity, and compute the actual sensitivity of the rapid diagnosis kit based on the data of KDCA.

Deep Learning-Based Chest X-ray Corona Diagnostic Algorithm (딥러닝 기반 흉부엑스레이 코로나 진단 알고리즘)

  • Kim, June-Gyeom;Seo, Jin-Beom;Cho, Young-Bok
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.73-74
    • /
    • 2021
  • 코로나로 인해 X-ray, CT, MRI와 같은 의료영상 분야에서 딥러닝을 많이 접목시키고 있다. 간단히 접할 수 있는 X-ray 영상으로 코로나 진단을 위해 CNN, R-CNN 등과 같은 영상 딥러닝 분야에서 많은 연구가 진행되고 있다. 의료영상 기반 딥러닝 학습은 바이오마커를 정확히 찾아내고, 최소한의 손실률과 높은 정확도를 필요로한다, 따라서 본 논문에서는 높은 정확도를 위한 학습 모델을 선정하고 실험을 진행하였다.

  • PDF

Audio-based COVID-19 diagnosis using separable transformer (트랜스포머를 이용한 음성기반 코비드19 진단)

  • Seungtae Kang;Gil-Jin Jang
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.3
    • /
    • pp.221-225
    • /
    • 2023
  • In this paper, we proposed an efficient method for rapid diagnosis of COVID-19 by voice. A novel Strided Convolution Separable Transformer (SC-SepTr) is proposed by modifying the conventional Separable Transformer (SepTr) for audio signal recognition. The proposed method reduces the memory and computational requirements to enable rapid diagnosis of COVID-19. As a result of experiments on Coswara, it was shown that the proposed method perform rapid diagnosis with guaranteeing Area Under the Curve (AUC) performance even for a relatively small amount of learning data.

Diagnostic Techniques for SARS-CoV-2 Detection (SARS-CoV-2의 진단기술)

  • Kim, Jong-Sik;Kang, Na-Kyung;Park, Seon-Mi;Lee, Eun-Joo;Chung, Kyung Tae
    • Journal of Life Science
    • /
    • v.30 no.8
    • /
    • pp.731-741
    • /
    • 2020
  • Coronavirus disease 19 (COVID-19) is caused by SARS-CoV-2 (Severe Acute Respiratory SyndromeCoronavirus 2). To date, seven coronaviruses that can infect humans were reported. Among them, infections with four coronavirus strains (HCoV-229E, HCoV-OC43, HCoV-NL63, and HCoV-HKU1) resulted in mild symptoms such as common cold, whereas SARS-CoV and MERS-CoV caused severe symptoms and epidemics in 2002 and 2012, respectively. In the most recent, SARS-CoV-2 was first reported in Wuhan, China in December 2019 and became a notorious cause of the ongoing global pandemics. To diagnose, treat, and prevent COVID-19, the development of rapid and accurate diagnostic tools, specific therapeutic drugs, and safe vaccines essentially are required. In order to develop these powerful tools, it is prerequisite to understand a phenotype, a genotype, and life cycle of SARS-CoV-2. Diagnostic techniques have been developing rapidly around world and many countries take the fast track system to accelerate approval. Approved diagnostic devices are rapidly growing facing to urgent demand to identify carriers. Currently developed commercial diagnostic devices are divided into mainly two categories: molecular assay and serological & immunological assay. Molecular assays begins the reverse transcription step following polymerase chain reaction or isothermal amplification. Immunological assay targets SARS-CoV-2 antigen or anti-SARS-CoV-2 antibody of samples. In this review, we summarize the phenotype, genome structure and gene expression of SARS-CoV-2 and provide the knowledge on various diagnostic techniques for SARS-CoV-2.

Role of Chest Radiographs and CT Scans and the Application of Artificial Intelligence in Coronavirus Disease 2019 (코로나바이러스감염증 2019에서 흉부X선사진 및 CT의 역할과 인공지능의 적용)

  • Seung-Jin Yoo;Jin Mo Goo;Soon Ho Yoon
    • Journal of the Korean Society of Radiology
    • /
    • v.81 no.6
    • /
    • pp.1334-1347
    • /
    • 2020
  • Coronavirus disease (COVID-19) has threatened public health as a global pandemic. Chest CT and radiography are crucial in managing COVID-19 in addition to reverse transcription-polymerase chain reaction, which is the gold standard for COVID-19 diagnosis. This is a review of the current status of the use of chest CT and radiography in COVID-19 diagnosis and management and anㄷ introduction of early representative studies on the application of artificial intelligence to chest CT and radiography. The authors also share their experiences to provide insights into the future value of artificial intelligence.

A Case of False Negativity With COVID-19 Diagnostic Test in Total Laryngectomee (코로나바이러스 감염증-19 진단검사에 위음성을 보인 후두전절제 환자 1예)

  • Beag, Moon Seung;Kwon, Hyeok Ro;Kim, Seung Woo
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.33 no.1
    • /
    • pp.54-57
    • /
    • 2022
  • The coronavirus disease (COVID-19) by severe acute syndrome coronavirus-2 (SARS-CoV-2) occurs the unprecedented pandemic during recent two years and the WHO declared a global pandemic of COVID-19 in March 2020. The most common sampling sites in COVID-19 test are the oropharynx and nasopharynx. We recently encountered a total laryngectomee who had a positivity COVID-19 diagnostic test from the tracheostoma, on the other hand, false negativity from the nasal cavity. The meaning of this case is that accurate screening test could be achieved by performing a test through the tracheostoma as well as nasal cavity or oropharynx. We also would like to discuss the accurate testing methods of patients whose airflow has distorted due to surgery, the management method of these patients, and the need of further research in the COVID-19 pandemic period with relevant literature reviews.

Coronaviruses: SARS, MERS and COVID-19 (코로나바이러스: 사스, 메르스 그리고 코비드-19)

  • Kim, Eun-Joong;Lee, Dongsup
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.52 no.4
    • /
    • pp.297-309
    • /
    • 2020
  • Coronaviruses were originally discovered as enzootic infections that limited to their natural animal hosts, but some strains have since crossed the animal-human species barrier and progressed to establish zoonotic diseases. Accordingly, cross-species barrier jumps resulted in the appearance of SARS-CoV, MERS-CoV, and SARS-CoV-2 that manifest as virulent human viruses. Coronaviruses contain four main structural proteins: spike, membrane, envelope, and nucleocapsid protein. The replication cycle is as follows: cell entry, genome translation, replication, assembly, and release. They were not considered highly pathogenic to humans until the outbreaks of SARS-CoV in 2002 in Guangdong province, China. The consequent outbreak of SARS in 2002 led to an epidemic with 8,422 cases, and a reported worldwide mortality rate of 11%. MERS-CoVs is highly related to camel CoVs. In 2019, a cluster of patients infected with 2019-nCoV was identified in an outbreak in Wuhan, China, and soon spread worldwide. 2019-nCoV is transmitted through the respiratory tract and then induced pneumonia. Molecular diagnosis based on upper respiratory region swabs is used for confirmation of this virus. This review examines the structure and genomic makeup of the viruses as well as the life cycle, diagnosis, and potential therapy.

Group Testing Scheme for Effective Diagnosis of COVID-19 (효율적인 코로나19 진단을 위한 그룹검사 체계)

  • Seong, Jin-Taek
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.6
    • /
    • pp.445-451
    • /
    • 2021
  • Due to the recent spread and increasing damage of COVID-19, the most important measure to prevent infection is to find infected people early. Group testing which introduced half a century ago, can be used as a diagnostic method for COVID-19 and has become very efficient method. In this paper, we review the fundamental principles of existing group testing algorithms. In addition, the sparse signal reconstruction approach proposed by compressed sensing is improved and presented as a solution to group testing. Compressed sensing and group testing differ in computational methods, but are similar in that they find sparse signals. The our simulation results show the superiority of the proposed sparse signal reconstruction method. It is noteworthy that the proposed method shows performance improvement over other algorithms in the group testing schemes. It also shows performance improvement when finding a large number of defective samples.