• Title/Summary/Keyword: 코드 탐지

Search Result 586, Processing Time 0.08 seconds

악성코드 탐지를 위한 물리 메모리 분석 기술

  • Kang, YoungBok;Hwang, Hyunuk;Kim, Kibom;Sohn, Kiwook;Noh, Bongnam
    • Review of KIISC
    • /
    • v.24 no.1
    • /
    • pp.39-44
    • /
    • 2014
  • 악성코드는 다양해진 감염 경로를 통해 쉽게 노출될 수 있으며, 개인정보의 유출뿐만 아니라 봇넷을 이용한 DDoS 공격과 지능화된 APT 공격 등을 통해 심각한 보안 위협을 발생시키고 있다. 최근 악성코드들은 실행 후에는 메모리에서만 동작하는 방식으로 파일로 존재하지 않기 때문에 기존의 악성코드 탐지 기법으로 이를 찾기가 쉽지 않다. 이를 극복하고자 최근에는 물리 메모리 덤프를 포함하여 악성코드 분석 및 탐지 연구가 활발하게 진행되고 있다. 본 논문에서는 윈도우 시스템의 물리 메인 메모리에서 악성코드 탐지 기술에 대해 설명하고, 기존 개발된 물리 메모리 악성코드 탐지 도구에 대한 분석을 수행하여 도구별 악성코드 탐지 기능에 대한 특징을 설명한다. 물리 메모리 악성코드 탐지 도구의 분석 결과를 통해 기존 물리 메모리 악성코드 탐지 기술의 한계점을 제시하고, 향후 정확하고 효율적인 물리 메모리 악성코드 탐지의 기반 연구로 활용하고자 한다.

악성코드 변종 탐지를 위한 코드 재사용 분석 기법

  • Kim, TaeGuen;Im, Eul Gyu
    • Review of KIISC
    • /
    • v.24 no.1
    • /
    • pp.32-38
    • /
    • 2014
  • 본 논문은 수년간 급격하게 증가되어 많은 피해를 초래하고 있는 악성코드를 탐지하기 위한 기법을 제안한다. 악성코드 제작자로부터 생산되고 인터넷에 유포되는 대부분의 악성코드는 처음 개발된 제로-데이 악성코드의 코드 일부를 그래도 재사용하는 경우가 많다. 이러한 특징에 의해 악성코드 변종들 사이에는 악의적 행위를 위해 사용되는 함수들 중 공통으로 포함되는 코드들이 존재하게 된다. 논문에 저자는 이점에 착안하여 코드 재사용 검사 여부를 통한 악성코드 변종 탐지 기법을 제안하고 있다. 그리고 변종 샘플을 이용한 변종 탐지의 가능성을 증명하는 실험과 실제 공통으로 존재하는 재사용 코드 일부(함수) 추출 정확성을 알아보는 실험을 수행하여 주장을 뒷받침한다.

Web-Anti-MalWare Malware Detection System (악성코드 탐지 시스템 Web-Anti-Malware)

  • Jung, Seung-il;Kim, Hyun-Woo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2014.07a
    • /
    • pp.365-367
    • /
    • 2014
  • 최근 웹 서비스의 증가와 악성코드는 그 수를 판단 할 수 없을 정도로 빠르게 늘어나고 있다. 매년 늘어나는 악성코드는 금전적 이윤 추구가 악성코드의 주된 동기가 되고 있으며 이는 공공기관 및 보안 업체에서도 악성코드를 탐지하기 위한 연구가 활발히 진행되고 있다. 본 논문에서는 실시간으로 패킷을 분석할수 있는 필터링과 웹 크롤링을 통해 도메인 및 하위 URL까지 자동적으로 탐지할 수 있는 악성코드 탐지 시스템을 제안한다.

  • PDF

Unknown Malware Detection Using File Reputation (파일 평판을 이용한 알려지지 않은 악성 코드 탐지)

  • Cho, Yun-Jin
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.04a
    • /
    • pp.376-379
    • /
    • 2015
  • 최근 발생한 다양한 해킹 사건에서와 같이, 신규 또는 알려지지 않은 악성코드를 이용한 지능형 지속 공격이 점차 증가하고 있다. 기존의 악성 코드가 해커의 단순한 호기심이나 해커 자신의 능력을 과시하기 위해 제작되어 불특정 다수를 공격했다면, 최근의 해킹 사건에서 사용된 악성코드는 오직 특정 대상만을 목표로 하여 제작, 사용되고 있는 것이 특징이다. 현재 대다수의 악성코드 탐지 방식인 블랙리스트 기반의 시그니처에 의한 탐지방식에서는 악성코드의 일부분이라도 변경이 되면 해당 악성코드를 탐지할 수가 없기 때문에 신규 악성 코드를 탐지하고 대응하는 것이 어렵다. 그러므로 지능형 지속 공격에 대응하기 위해서는 새로운 형태의 파일 탐지 기술이 필요하다. 이에 본 논문에서는 파일의 다양한 속성 및 사용자 분포에 따른 평판점수를 통해 신규 악성코드를 탐지하는 기법을 제안한다.

Detection Model based on Deeplearning through the Characteristics Image of Malware (악성코드의 특성 이미지화를 통한 딥러닝 기반의 탐지 모델)

  • Hwang, Yoon-Cheol;Mun, Hyung-Jin
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.11
    • /
    • pp.137-142
    • /
    • 2021
  • Although the internet has gained many conveniences and benefits, it is causing economic and social damage to users due to intelligent malware. Most of the signature-based anti-virus programs are used to detect and defend this, but it is insufficient to prevent malware variants becoming more intelligent. Therefore, we proposes a model that detects and defends the intelligent malware that is pouring out in the paper. The proposed model learns by imaging the characteristics of malware based on deeplearning, and detects newly detected malware variants using the learned model. It was shown that the proposed model detects not only the existing malware but also most of the variants that transform the existing malware.

Convolution Neural Network for Malware Detection (합성곱 신경망(Convolution Neural Network)를 이용한 악성코드 탐지 방안 연구)

  • Choi, Sin-Hyung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.05a
    • /
    • pp.166-168
    • /
    • 2018
  • 새롭게 변형되는 대규모 악성코드들을 신속하게 탐지하기 위하여 인공지능 딥러닝을 이용한 악성코드 탐지 기법을 제안한다. 대용량의 고차원 악성코드를 저차원의 이미지로 변환하고, 딥러닝 합성곱신경망(Convolution Neural Network)을 통해 이미지의 악성코드 패턴을 학습하고 분류하였다. 본 논문에서는 악성코드 분류 모델의 성능을 검증하기 위하여 악성코드 종류별 분류 실험과 악성코드와 정상코드 분류 실험을 실시하였고 각각 97.6%, 87%의 정확도로 악성코드를 구별해 내었다. 본 논문에서 제안한 악성코드 탐지 모델은 차원 축소를 통해 10,868개(200GB)의 대규모 데이터에 대하여 10분 이내의 학습시간이 소요되어 새로운 악성코드 학습 및 대용량 악성코드 탐지를 신속하게 처리 가능함을 보였다.

Algorithm for Detecting Malicious Code in Mobile Environment Using Deep Learning (딥러닝을 이용한 모바일 환경에서 변종 악성코드 탐지 알고리즘)

  • Woo, Sung-hee;Cho, Young-bok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.306-308
    • /
    • 2018
  • This paper proposes a variant malicious code detection algorithm in a mobile environment using a deep learning algorithm. In order to solve the problem of malicious code detection method based on Android, we have proved high detection rate through signature based malicious code detection method and realtime malicious file detection algorithm using machine learning method.

  • PDF

A Survey on Behavioral Based Malware Detection Techniques (행위 기반 악성코드 탐지 기술에 관한 동향 연구)

  • Kim, Ho-Yeon;Choi, Young-Hyun;Chung, Tai-Myoung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.04a
    • /
    • pp.770-773
    • /
    • 2012
  • 특정 기업 및 국가를 대상으로 하는 APT(Advanced Persistent Threat)공격의 경우 특정 시스템을 겨냥하여 제작되기 때문에 기존의 시그니처 기반의 악성코드 탐지 방식으로는 해당 악성코드를 탐지할 수 없다. 따라서 알려지지 않은 악성코드를 탐지할 수 있는 행위 기반의 악성코드 탐지 방식이 최근 이슈화되었다. 본 논문에서는 연구되고 있는 행위 분석 기반의 악성코드 탐지 방식들을 분석함으로써 향후 행위 기반 악성코드 탐지 기술 개발 및 연구에 기여하고자 한다.

Extraction and classification of characteristic information of malicious code for an intelligent detection model (지능적 탐지 모델을 위한 악의적인 코드의 특징 정보 추출 및 분류)

  • Hwang, Yoon-Cheol
    • Journal of Industrial Convergence
    • /
    • v.20 no.5
    • /
    • pp.61-68
    • /
    • 2022
  • In recent years, malicious codes are being produced using the developing information and communication technology, and it is insufficient to detect them with the existing detection system. In order to accurately and efficiently detect and respond to such intelligent malicious code, an intelligent detection model is required, and in order to maximize detection performance, it is important to train with the main characteristic information set of the malicious code. In this paper, we proposed a technique for designing an intelligent detection model and generating the data required for model training as a set of key feature information through transformation, dimensionality reduction, and feature selection steps. And based on this, the main characteristic information was classified by malicious code. In addition, based on the classified characteristic information, we derived common characteristic information that can be used to analyze and detect modified or newly emerging malicious codes. Since the proposed detection model detects malicious codes by learning with a limited number of characteristic information, the detection time and response are fast, so damage can be greatly reduced and Although the performance evaluation result value is slightly different depending on the learning algorithm, it was found through evaluation that most malicious codes can be detected.

Malware Detection Device Using Hybrid Filter (하이브리드 필터를 이용한 악성코드 탐지 장치)

  • Oh, Dong-Yeob;Park, Jae-Kyung
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2014.07a
    • /
    • pp.67-70
    • /
    • 2014
  • 최근의 다양한 환경에서 악성코드나 의심 코드에 의한 피해가 날로 늘어나고 있는 추세이며 이를 종합적으로 대응할 수 있는 시스템에 대한 연구가 활발히 이루어지고 있는 상황이다. 이러한 악성코드는 사용자의 동의 없이도 PC에 설치되어 사용자가 인지하지 못하는 피해를 지속적으로 영산하고 있으며 그 심각성도 날로 심해지고 있는 실정이다. 또한 다양한 시스템으로부터 수집되는 방대한 양의 데이터를 실시간으로 처리하고 검증하는 기술 및 탐지 기법을 토대로 악성코드를 탐지하고 분석할 수 있는 대응기술로 고도화 되어야만 한다. 이러한 악성코드는 사용자의 PC에 설치되기 이전부터 검사 및 판단하여 사전 대응하는 것이 매우 중요하다. 본 논문에서는 이러한 악성코드가 실제 PC상에 설치되기 이전에 탐지할 수 있는 기법을 제시하며 이를 장치형태로 검증하였다. 본 논문에서 제시하는 기술을 토대로 악상코드 근절에 대한 근본적인 대안을 제시할 것이라 판단한다.

  • PDF