악성코드는 다양해진 감염 경로를 통해 쉽게 노출될 수 있으며, 개인정보의 유출뿐만 아니라 봇넷을 이용한 DDoS 공격과 지능화된 APT 공격 등을 통해 심각한 보안 위협을 발생시키고 있다. 최근 악성코드들은 실행 후에는 메모리에서만 동작하는 방식으로 파일로 존재하지 않기 때문에 기존의 악성코드 탐지 기법으로 이를 찾기가 쉽지 않다. 이를 극복하고자 최근에는 물리 메모리 덤프를 포함하여 악성코드 분석 및 탐지 연구가 활발하게 진행되고 있다. 본 논문에서는 윈도우 시스템의 물리 메인 메모리에서 악성코드 탐지 기술에 대해 설명하고, 기존 개발된 물리 메모리 악성코드 탐지 도구에 대한 분석을 수행하여 도구별 악성코드 탐지 기능에 대한 특징을 설명한다. 물리 메모리 악성코드 탐지 도구의 분석 결과를 통해 기존 물리 메모리 악성코드 탐지 기술의 한계점을 제시하고, 향후 정확하고 효율적인 물리 메모리 악성코드 탐지의 기반 연구로 활용하고자 한다.
본 논문은 수년간 급격하게 증가되어 많은 피해를 초래하고 있는 악성코드를 탐지하기 위한 기법을 제안한다. 악성코드 제작자로부터 생산되고 인터넷에 유포되는 대부분의 악성코드는 처음 개발된 제로-데이 악성코드의 코드 일부를 그래도 재사용하는 경우가 많다. 이러한 특징에 의해 악성코드 변종들 사이에는 악의적 행위를 위해 사용되는 함수들 중 공통으로 포함되는 코드들이 존재하게 된다. 논문에 저자는 이점에 착안하여 코드 재사용 검사 여부를 통한 악성코드 변종 탐지 기법을 제안하고 있다. 그리고 변종 샘플을 이용한 변종 탐지의 가능성을 증명하는 실험과 실제 공통으로 존재하는 재사용 코드 일부(함수) 추출 정확성을 알아보는 실험을 수행하여 주장을 뒷받침한다.
Proceedings of the Korean Society of Computer Information Conference
/
2014.07a
/
pp.365-367
/
2014
최근 웹 서비스의 증가와 악성코드는 그 수를 판단 할 수 없을 정도로 빠르게 늘어나고 있다. 매년 늘어나는 악성코드는 금전적 이윤 추구가 악성코드의 주된 동기가 되고 있으며 이는 공공기관 및 보안 업체에서도 악성코드를 탐지하기 위한 연구가 활발히 진행되고 있다. 본 논문에서는 실시간으로 패킷을 분석할수 있는 필터링과 웹 크롤링을 통해 도메인 및 하위 URL까지 자동적으로 탐지할 수 있는 악성코드 탐지 시스템을 제안한다.
Proceedings of the Korea Information Processing Society Conference
/
2015.04a
/
pp.376-379
/
2015
최근 발생한 다양한 해킹 사건에서와 같이, 신규 또는 알려지지 않은 악성코드를 이용한 지능형 지속 공격이 점차 증가하고 있다. 기존의 악성 코드가 해커의 단순한 호기심이나 해커 자신의 능력을 과시하기 위해 제작되어 불특정 다수를 공격했다면, 최근의 해킹 사건에서 사용된 악성코드는 오직 특정 대상만을 목표로 하여 제작, 사용되고 있는 것이 특징이다. 현재 대다수의 악성코드 탐지 방식인 블랙리스트 기반의 시그니처에 의한 탐지방식에서는 악성코드의 일부분이라도 변경이 되면 해당 악성코드를 탐지할 수가 없기 때문에 신규 악성 코드를 탐지하고 대응하는 것이 어렵다. 그러므로 지능형 지속 공격에 대응하기 위해서는 새로운 형태의 파일 탐지 기술이 필요하다. 이에 본 논문에서는 파일의 다양한 속성 및 사용자 분포에 따른 평판점수를 통해 신규 악성코드를 탐지하는 기법을 제안한다.
Although the internet has gained many conveniences and benefits, it is causing economic and social damage to users due to intelligent malware. Most of the signature-based anti-virus programs are used to detect and defend this, but it is insufficient to prevent malware variants becoming more intelligent. Therefore, we proposes a model that detects and defends the intelligent malware that is pouring out in the paper. The proposed model learns by imaging the characteristics of malware based on deeplearning, and detects newly detected malware variants using the learned model. It was shown that the proposed model detects not only the existing malware but also most of the variants that transform the existing malware.
Proceedings of the Korea Information Processing Society Conference
/
2018.05a
/
pp.166-168
/
2018
새롭게 변형되는 대규모 악성코드들을 신속하게 탐지하기 위하여 인공지능 딥러닝을 이용한 악성코드 탐지 기법을 제안한다. 대용량의 고차원 악성코드를 저차원의 이미지로 변환하고, 딥러닝 합성곱신경망(Convolution Neural Network)을 통해 이미지의 악성코드 패턴을 학습하고 분류하였다. 본 논문에서는 악성코드 분류 모델의 성능을 검증하기 위하여 악성코드 종류별 분류 실험과 악성코드와 정상코드 분류 실험을 실시하였고 각각 97.6%, 87%의 정확도로 악성코드를 구별해 내었다. 본 논문에서 제안한 악성코드 탐지 모델은 차원 축소를 통해 10,868개(200GB)의 대규모 데이터에 대하여 10분 이내의 학습시간이 소요되어 새로운 악성코드 학습 및 대용량 악성코드 탐지를 신속하게 처리 가능함을 보였다.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2018.10a
/
pp.306-308
/
2018
This paper proposes a variant malicious code detection algorithm in a mobile environment using a deep learning algorithm. In order to solve the problem of malicious code detection method based on Android, we have proved high detection rate through signature based malicious code detection method and realtime malicious file detection algorithm using machine learning method.
Proceedings of the Korea Information Processing Society Conference
/
2012.04a
/
pp.770-773
/
2012
특정 기업 및 국가를 대상으로 하는 APT(Advanced Persistent Threat)공격의 경우 특정 시스템을 겨냥하여 제작되기 때문에 기존의 시그니처 기반의 악성코드 탐지 방식으로는 해당 악성코드를 탐지할 수 없다. 따라서 알려지지 않은 악성코드를 탐지할 수 있는 행위 기반의 악성코드 탐지 방식이 최근 이슈화되었다. 본 논문에서는 연구되고 있는 행위 분석 기반의 악성코드 탐지 방식들을 분석함으로써 향후 행위 기반 악성코드 탐지 기술 개발 및 연구에 기여하고자 한다.
In recent years, malicious codes are being produced using the developing information and communication technology, and it is insufficient to detect them with the existing detection system. In order to accurately and efficiently detect and respond to such intelligent malicious code, an intelligent detection model is required, and in order to maximize detection performance, it is important to train with the main characteristic information set of the malicious code. In this paper, we proposed a technique for designing an intelligent detection model and generating the data required for model training as a set of key feature information through transformation, dimensionality reduction, and feature selection steps. And based on this, the main characteristic information was classified by malicious code. In addition, based on the classified characteristic information, we derived common characteristic information that can be used to analyze and detect modified or newly emerging malicious codes. Since the proposed detection model detects malicious codes by learning with a limited number of characteristic information, the detection time and response are fast, so damage can be greatly reduced and Although the performance evaluation result value is slightly different depending on the learning algorithm, it was found through evaluation that most malicious codes can be detected.
Proceedings of the Korean Society of Computer Information Conference
/
2014.07a
/
pp.67-70
/
2014
최근의 다양한 환경에서 악성코드나 의심 코드에 의한 피해가 날로 늘어나고 있는 추세이며 이를 종합적으로 대응할 수 있는 시스템에 대한 연구가 활발히 이루어지고 있는 상황이다. 이러한 악성코드는 사용자의 동의 없이도 PC에 설치되어 사용자가 인지하지 못하는 피해를 지속적으로 영산하고 있으며 그 심각성도 날로 심해지고 있는 실정이다. 또한 다양한 시스템으로부터 수집되는 방대한 양의 데이터를 실시간으로 처리하고 검증하는 기술 및 탐지 기법을 토대로 악성코드를 탐지하고 분석할 수 있는 대응기술로 고도화 되어야만 한다. 이러한 악성코드는 사용자의 PC에 설치되기 이전부터 검사 및 판단하여 사전 대응하는 것이 매우 중요하다. 본 논문에서는 이러한 악성코드가 실제 PC상에 설치되기 이전에 탐지할 수 있는 기법을 제시하며 이를 장치형태로 검증하였다. 본 논문에서 제시하는 기술을 토대로 악상코드 근절에 대한 근본적인 대안을 제시할 것이라 판단한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.