• Title/Summary/Keyword: 코너 추출

Search Result 71, Processing Time 0.02 seconds

Image Retrieval using Gray Scale Histogram Refinement and Corner Shape (코너 형태와 그레이스케일 히스토그램을 정제를 이용한 영상검색)

  • Jeong, Il-Hoe;Riaz, Muhammad;Park, Jong-An
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.380-383
    • /
    • 2008
  • 본 논문은 단순한 키워드 검색에서 발생하는 오차를 줄이기 위해 이미지의 코너정보와 그레이스케일 히스토그램 정제를 이용한 영상 검색 시스템을 구현하고자 한다. 먼저 원하는 이미지의 특정을 추출하는 단계와 추출된 특징을 분석하는 단계, 확보된 정보를 데이터베이스로부터 검색하는 단계, 그 결과 안에서의 그레이스케일 히스토그램 정제 방법으로 다시 재검색하는 단계, 마지막으로 정확한 정보 추출단계를 거치게 된다. 구현 알고리즘은 검색 단계에 있어서 크게 2단계로 나눠진다. 먼저 이미지를 에지로 변환 코너정보를 추출하는 단계, 코너 점의 픽셀을 3*3으로 나누어 RGB중의 픽셀의 합을 하는 단계, 그 코너 값을 데이터베이스와 비교하는 단계, 최대 500개까지의 추출된 이미지를 데이터베이스에 저장되는 단계로 이루어지며 다음 단계는 원 이미지를 그레이스케일로 변환 등질화하는 단계, 히스토그램 정보 획득하는 단계, 8*8 개의 빈으로 나누어 최대 색상정보 값을 추출하는 단계, 그리고 최대 색상정보 영역을 1단계 결과 값과 비교하여 정확한 검색을 얻는 단계로 구성되며 시뮬레이션 결과는 우수한 정확도를 보여 주고 있다.

  • PDF

Rotated object recognition based on corner feature points in mobile environment (모바일 환경 응용을 위한 코너 특징점 기반의 회전 객체 검출)

  • Kim, Dae-Hwan;Piao, Jin-Chun;Kim, Shin-Dug
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2013.07a
    • /
    • pp.23-26
    • /
    • 2013
  • 최근 모바일 장치의 영상 데이터 처리 능력 확대와 더불어 사용자가 요구하는 다양한 영상 데이터의 효율적인 인식 기술 연구가 요구되어지고 있다. 모바일 환경은 고성능 PC 환경과 달리 저사양의 CPU와 메모리를 탑재하고 있어, 영상에서 원하는 객체를 인식하기 위한 기존의 방법론으로는 사용자 요구를 실시간으로 충족하기 어려운 부분이 존재한다. 이에 모바일 환경에 맞는 객체 인식 방법론의 개발이 요구된다. 모바일 환경에서 실시간으로 객체 인식을 하기 위하여, 본 논문에서는 객체 코너 정보를 이용한 Harris corner detector[1]로부터 객체의 특징점을 추출하고, 이를 바탕으로 하여 영상내의 객체 정보 인식 방법을 제안한다. 제안하는 방법에 의해, 입력 영상에서 객체의 코너 정보를 빠르게 추출, 기존 특징점과의 비교를 통하여 영상 내부의 객체 인식을 진행한다. 일반적으로, 회전된 특징점 객체의 정보는 객체의 회전 정도에 따라 코너 픽셀 색상 정보의 변화가 발생하게 된다. 특징점의 색상값은 객체의 회전 정도에 영향을 받아 주변의 픽셀값과 혼합되는 특성이 존재한다. 본 논문에서는 회전 변경된 픽셀 색상값의 영향을 분석하여, 회전된 객체의 특징점 추출 및 객체 검출에 반영하도록 하여, 영상 내부의 회전된 객체 검출의 수행에 효과적으로 이용될 수 있도록 한다. 특징점의 코너 정보를 이용하여 객체를 인식하는 것은, 객체의 인식률은 다소 감소하더라도 모바일 환경에서 계산량의 감소를 통한 실시간 활용이 가능하도록 한다. 이러한 특성은 저성능 CPU와 메모리에서도 회전된 객체의 인식을 수행할 수 있게 하는데 상당히 효과적이다.

  • PDF

Text Region Extraction from Videos using the Harris Corner Detector (해리스 코너 검출기를 이용한 비디오 자막 영역 추출)

  • Kim, Won-Jun;Kim, Chang-Ick
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.7
    • /
    • pp.646-654
    • /
    • 2007
  • In recent years, the use of text inserted into TV contents has grown to provide viewers with better visual understanding. In this paper, video text is defined as superimposed text region located of the bottom of video. Video text extraction is the first step for video information retrieval and video indexing. Most of video text detection and extraction methods in the previous work are based on text color, contrast between text and background, edge, character filter, and so on. However, the video text extraction has big problems due to low resolution of video and complex background. To solve these problems, we propose a method to extract text from videos using the Harris corner detector. The proposed algorithm consists of four steps: corer map generation using the Harris corner detector, extraction of text candidates considering density of comers, text region determination using labeling, and post-processing. The proposed algorithm is language independent and can be applied to texts with various colors. Text region update between frames is also exploited to reduce the processing time. Experiments are performed on diverse videos to confirm the efficiency of the proposed method.

Vision based Object Recognition for Autonomous Robot Navigation (로봇의 자율 항해를 위한 비전기반의 객체 인식)

  • Kim, Kwon;Lee, Chang-Woo;Xu, Sudan;Cui, Yao-Huan
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2008.06a
    • /
    • pp.205-209
    • /
    • 2008
  • 본 논문은 입력되는 영상에서 특정 객체를 찾기 위하여 특징 검출 및 매칭 결과를 분석하여 기술한다. 영상의 특징을 추출하는 방법 중 코너를 특징으로 하는 방법인 해리스 코너 검출(Harris corner detection)을 이용하여 코너를 추출하였으며, 추출한 특징을 이용하여 다양한 크기의 템플릿을 만들어 입력된 영상과 상관계수를 구해 최대값을 가지는 위치를 찾아 입력된 영상과 객체를 매칭 시킨 결과를 분석하였다. 본 논문의 연구 결과들은 객체의 탐지 등과 같은 영상 분석 기반 기술에 활용될 수 있으리라 기대된다.

  • PDF

A study of the effective corner edge detection using facet model method (다면채 모델 방법을 이용한 효율적 코너 에지 추출에 관한 연구)

  • 전진오;김혁만
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10b
    • /
    • pp.409-411
    • /
    • 2001
  • 임의의 입력 영상을 이해함에 있어서 코너점은 디지털 영상의 중요한 정보가 집중되어 있기 때문에 형태를 분석하는데 있어 중요한 요소이다. 본 논문은 영상의 중요한 정보 요소인 코너점을 보다 정확하게 추출하기 위하여 Farzin Mokhtarian과 Riku Suomela가 제안한 CSS(Curvature Scale Space) 방법에 기초한 다면체 모델 방법을 이용한 새로운 알고리즘을 제안하고자 한다.

  • PDF

Image Mosaics using Morphological Corner Detection (모폴로지 코너 검출법을 이용한 영상 모자이크)

  • 조세연;이정호;유형승;조아영;정동석
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04b
    • /
    • pp.700-702
    • /
    • 2004
  • 모자이크는 설러 장의 영상을 하나의 큰 영상으로 만드는 것을 말한다. 본 논문은 asymmetrical closing이라고 불리는 모폴로지에 의한 closing operator를 사용한 영상 모자이크에 관한 연구이다. asymmetrical closing을 하기 위한 structuring element를 소개하고 이것을 이용한 코너 정 추출 방법 및 local maxima에 대해서도 소개한다. 여러 개의 코너 정들 중 조건을 만족하는 tie point들을 이용하여 Perspective 변환 파라미터를 추출하여 최종 모자이크 결과 영상을 생성하게 된다.

  • PDF

A Study on Detecting Optimal Corner Points using Morphology and Human Visual Concept (수리 형태학과 인간의 시각적 개념을 이용한 최적의 코너 점 추출을 위한 연구)

  • Jeong, Gi-Ryong
    • Journal of Navigation and Port Research
    • /
    • v.28 no.3
    • /
    • pp.233-238
    • /
    • 2004
  • Comer point is a very important information to a pattern recognition of image processing. And so, many researchers develope various detecting comer point algoritms. But, there are some problems to get comer points by 8 directional chain code when the degree of edge line is not integer multiplication of 45 degree. So, we propose a new algorithm which is combined with morphology and human visual conception for optimal comer points without the above defects. We get a good simulation result by this proposed algorithm Ana so, we think this algorithm is very useful to FA(factory automation} and ship's radar system to know some coastal area from its image.

Robust Extraction of Facial Features under Illumination Variations (조명 변화에 견고한 얼굴 특징 추출)

  • Jung Sung-Tae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.6 s.38
    • /
    • pp.1-8
    • /
    • 2005
  • Facial analysis is used in many applications like face recognition systems, human-computer interface through head movements or facial expressions, model based coding, or virtual reality. In all these applications a very precise extraction of facial feature points are necessary. In this paper we presents a method for automatic extraction of the facial features Points such as mouth corners, eye corners, eyebrow corners. First, face region is detected by AdaBoost-based object detection algorithm. Then a combination of three kinds of feature energy for facial features are computed; valley energy, intensity energy and edge energy. After feature area are detected by searching horizontal rectangles which has high feature energy. Finally, a corner detection algorithm is applied on the end region of each feature area. Because we integrate three feature energy and the suggested estimation method for valley energy and intensity energy are adaptive to the illumination change, the proposed feature extraction method is robust under various conditions.

  • PDF

Object Retrieval Using the Corners Area Variability Based on Correlogram (코너영역 분산치 기반 코렐로그램을 이용한 형태검출)

  • An, Young-Eun;Lee, Ji-Min;Yang, Won-Ii;Choi, Young-Il;Chang, Min-Hyuk
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.6
    • /
    • pp.283-288
    • /
    • 2011
  • This paper have proposed an object retrieval using the corners area variability based on correlogram. The proposed algorithm is processed as follows. First, the corner points of the object in an image are extracted and then the feature vectors are obtained. It are rearranged according to the number dimension and consist of sequence vectors. And the similarity based on the maximum of sequence vectors is measured. The proposed technique is invariant to the rotation or the transfer of the objects and more efficient in case that the objects present simple structure. In simulation that use Wang's database, the method presents that the recall property is improved by 0.03% and more than the standard corner patch histogram.

Comer Detection in Gray Lavel Images for Wafer Die Position Recognition (웨이퍼 다이 위치 인식을 위한 명암 영상 코너점 검출)

  • 나재형;오해석
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.6
    • /
    • pp.792-798
    • /
    • 2004
  • In this paper, we will introduce a new corner detector for the wafer die position recognition. The die position recognition procedure is necessary for WSCSP(Wafer Scale Chip Scale Packaging) technology, decide the accuracy of post-procedure. We present a hierarchical gray level corner detection method for the recognition of the die position from a wafer image. The new corner detector divides the corner region into many homocentric circles, and calculates the comer response and the angle of direction about each circle to get an accurate toner point. The new corner detector has a hierarchical structure so it can detect comer point more quickly than general gray level corner detector.