모바일 기기의 기술 발전과 대중화는 어디서든 사용자의 위치를 확인할 수 있으며 인터넷을 사용할 수 있도록 발전되었다. 그러나 실내의 경우 인터넷은 끊김없이 사용할 수 있지만 global positioning system (GPS) 기능은 활용하기 어렵다. 실내 공공장소인 백화점, 박물관, 컨퍼런스장, 학교, 터널 등 GPS가 수신되지 않는 음영 지역에서 실시간 위치정보 제공의 필요성이 증가하고 있다. 이에 따라 최근의 실내 측위 기술은 랜드마크 데이터베이스를 구축하기 위해 light detection and ranging (LiDAR) 장비를 기반으로 연구가 증가하고 있다. 본 연구에서는 랜드마크 데이터베이스 구축의 접근성에 초점을 두어 모바일 기기를 기반으로 랜드마크를 촬영한 단일 이미지와 사전에 구축된 랜드마크 데이터베이스 정보를 이용하여 사용자의 위치를 추정하는 기법을 개발하고자 하였다. 첫 번째로, 랜드마크 데이터베이스를 구축하였다. 랜드마크를 촬영한 모바일 이미지만으로 사용자 위치를 추정하기 위해서는 모바일 이미지에서 랜드마크 검출이 필수적이고, 검출된 랜드마크에서 고정적인 성격을 가진 지점의 지상좌표 취득이 필수적이다. 두 번째 단계에서는 bag of words (BoW) 영상 검색 기술을 적용해 랜드마크 데이터베이스 중 모바일 이미지가 촬영한 랜드마크를 유사한 4위까지 검색하였다. 세 번째 단계에서는 scale invariant feature transform (SIFT) 특징점 추출 기법과 Homography random sample consensus (RANSAC)을 통해 검색된 4개의 후보 랜드마크들 중 가장 유사한 하나의 랜드마크를 선정하였고, 이때 임계값 설정을 통해 정합점 수를 기반으로 한 차례 더 필터링을 수행하였다. 네 번째 단계에서는 대응된 랜드마크와 모바일 이미지간의 Homography 행렬을 통해 랜드마크 이미지를 모바일 이미지에 투사하여 랜드마크의 영역과 코너(외곽선)점을 검출하였다. 마지막으로, 위치추정 기법을 통해 사용자의 위치를 추정하였다. 해당 기술의 성능을 분석한 결과, 랜드마크 검색 성능은 약 86%로 측정되었다. 위치추정 결과와 사용자의 실제 지상좌표를 비교한 결과, 약 0.56 m의 수평 위치 정확도를 갖는 것이 확인되어 별도의 고가 장비 없이 랜드마크 데이터베이스를 구축하여 모바일 영상으로 사용자 위치 추정이 가능한 것을 확인하였다.
본 논문에서는 이동로봇에 장착된 CCD 카메라를 통해 입력되는 영상에서 3차원 물체가 가지는 특징정보를 분석 및 추출하여하여 주행전방의 환경을 구분하는데 적용하게 된다. 복도 내에서 주행하는 로봇에 탑재된 카메라로 입력된 영상은 3차원 특징정보에 의해 장애물과 복도의 코너, 문으로 검출되어진다. 바닥의 장애물 정보 인식을 통한 이동로봇의 주행경로를 구하는데 있어 이들 세 가지는 최적의 경로 생성과 장애물 회피를 위한 매우 중요한 정보로 사용될 수 있다. 따라서, 본 논문에서는 입력영상을 전처리 후에 제안된 알고리즘을 기반으로한 이동로봇의 주행방향결정과, 입력 영상에서 신경망을 통하여 장애물 인식 및 특징정보 검출을 통한 이동로봇의 주행을 위한 선행 실험결과를 제시하였다.
High efficiency video coding (HEVC)은 H.264/AVC와 같은 이전 비디오 압축 표준 보다 더 높은 압축 효율을 갖는 최신 비디오 압축 표준이다. 화면 내 예측에서 최대 압축 단위 (LCU)들은 quadtree 구조를 통해 64x64부터 8x8까지의 크기를 갖는 더 작은 압축 단위 (CU)들로 나누어지고, 이들은 다시 예측 단위 (PU)들로 나누어진다. 가능한 크기까지 CU를 분할하면서 RDO (Rate Distortion Optimization) 과정을 통해 최적의 CU 분할 형태가 선택된다. 이 과정에서 HEVC는 많은 계산량을 필요로 한다. 본 논문에서는 HEVC의 계산량을 줄이기 위해, FAST (Features from Accelerated Segment Test) 코너 검출을 이용하여 화면 내 예측을 위한 고속 CU depth 결정 방법 (FCDD)을 제안한다. 제안하는 방법은 기존의 HEVC와 비교하여 약 0.7%의 BDBR 만큼의 적은 압축 성능 감소와 함께 부호화기에서 약 53.73%의 계산 시간을 감소시켰다.
한국신호처리시스템학회 2001년도 하계 학술대회 논문집(KISPS SUMMER CONFERENCE 2001
/
pp.165-168
/
2001
본 논문에서는 카메라 또는 카메라 플랫폼의 흔들림 등 외부 영향과 비디오 시퀀스내의 모션이 함께 존재할 경우 출렁이는 비디오를 전자적으로 안정화하는 방법을 제안한다. 일반적인 영상 안정 시스템은 모션 측정과 모션 보상의 두 과정으로 구성되는데 모션 측정에서는 프레임간 모션 모델을 가정하고 파라메타를 측정하며 모션 보상에서는 측정된 파라메타를 이용하여 모션을 보상한다. 영상 내에 카메라 모션 이외의 움직임이 있을 경우 파라메타의 측정을 일관성 없게 만들 수 있으므로 이를 해결하기 위해 MVSD(Motion Vector Scatter Diagram)에 기반한 영상 안정 방법이 제안되었다. 그러나 이 방법은 최적화 파라메타를 정량화 하는데 한계가 있고 또한 계산 시간이 오래 걸리는 단점이 있어 이의 해결을 위해 본 논문에서는 선 기반(Line-based) 영상 안정 방법을 제안한다. 이 방법은 먼저 기준 영상에서 median filter를 이용해 영상 내의 코너를 검출하고 특징적인 두 점을 선택하여 이를 선으로 연결한다. 현재 영상에서 correlation을 이용하여 상응하는 두 특징점을 찾고 subpixel 방법으로 정확한 위치를 계산하여 선을 구한다. 이 두 선을 일치시키는 과정에서 모션 파라메타를 구하는데 먼저 평행 이동을 통해 한쪽 글을 일치시키고 이 과정에서 translation x, y 파라메타를 구한다. 다음 단계에서 한 쪽 끝이 일치된 두 선이 이루는 각을 계산하여 rotation 파라메타를 구한다. 이 방법으로 구해진 파라메타를 이용하여 모션 보상을 함으로서 영상 안정을 이를 수 있었다.
오늘날 많은 디지털 저장 매체의 발달로 방대한 양의 영상 데이터가 데이터베이스화 되고 있으며 이러한 데이터베이스에서 필요한 영상 데이터론 효율적으로 검색하는 방범이 중요한 문제로 대두되고 있다. 현재 영상의 색상, 형태 및 질감 특성을 사용하여 다양한 영상 검색 방법이 제안되고 있으며 본 연구에선 이중 질감을 특징으로 하는 Gator 특징 벡터를 사용하고자 한다. 즉, 영상의 인터레스트 포인트를 찾아내어 그 점에서 Gabor 웨이블릿을 이용하여 특징 벡터를 추출하고 VQ를 기반으로 한 히스토그램 인터섹션 방법을 이용하여 영상 검색을 한다. 기존의 Gator 웨이블릿 방법은 영상의 회전에 대해 잘 동작하지 못하는 단점을 가지고 있으며 이는 회전 영상에 대한 검색율 저하에 크게 작용한다. 이 문제를 해결하고자 본 논문에선 회전 불변 Gabor 필터를 이용한 영상 검색 방법을 제안하고자 한다.
최근 깊이 영상 기반 렌더링 방법을 이용하여 제작된 3차원 컨텐츠가 우리의 눈을 즐겁게 해주고 있다. 이러한 깊이 영상 기반 렌더링에서는 필연적으로 색상 카메라와 깊이 카메라 간의 시점 차이가 발생한다. 따라서 두 시점을 일치시키는 전처리 과정으로서 카메라 파라미터가 중요한 역할을 수행한다. 카메라 파라미터를 획득하는 과정으로 카메라 캘리브레이션이 수행된다. 널리 사용되는 기존의 카메라 캘리브레이션 방법은 평면의 체스보드 패턴을 여러 자세로 촬영한 다음 패턴 특징점을 손으로 직접 선택해야하는 불편함이 따른다. 따라서 본 논문에서는 이 문제를 해결하기 위해 원형 샘플 화소 검사와 호모그래피 예측을 이용한 반자동 카메라 캘리브레이션을 제안한다. 제안하는 방법은 먼저 FAST 코너 검출 알고리즘을 이용하여 패턴 특징점의 후보를 영상으로부터 추출한다. 다음으로 원형 샘플 화소를 검사하여 후보군의 크기를 줄인다. 그리고 호모그래피 예측을 통해 손실된 패턴 특징점을 보완하는 완전한 패턴 특징점군을 획득한다. 마지막으로 화소 정확성 향상을 통해 실수 단위의 정확성을 가지는 패턴 특징점의 위치를 획득한다. 실험을 통해 제안하는 방법이 기존의 방법과 비교하여 카메라 파라미터의 정확성은 유지하고 수작업의 불편함을 해소할 수 있음을 확인했다.
This paper proposes an algorithm for precise detection of corner points on a coplanar checkerboard in order to perform stereo camera calibration using a single frame. Considering the conditions of automobile production lines where a stereo camera is attached to the windshield of a vehicle, this research focuses on a coplanar calibration methodology. To obtain the accurate values of the stereo camera parameters using the calibration methodology, precise localization of a large number of feature points on a calibration target image should be ensured. To realize this demand, the idea with respect to a checkerboard pattern design and the use of a Homography matrix are provided. The calibration result obtained by the proposed method is also verified by comparing the depth information from stereo matching and a laser scanner.
Shape Contexts Recognition(SCR)은 도형이나 사물 등의 모양을 인식하는 기술로 문자인식, 모션인식, 얼굴인식, 상황인식 등의 기반이 되는 기술이다. 하지만 일반적인 SCR은 Shape의 모든 contour에 대해 히스토그램을 만들고 Shape A, B 비교를 위해 추출된 contour를 1:1 개수대로 매핑함으로써 처리속도가 느리다는 단점이 있다. 따라서 본 논문에서는 Shape 모양에 따라 윤곽선을 찾고 개량 DP 알고리즘 및 해리스코너 검출기를 이용하여 contour를 최적화시킴으로써 간략하면서도 더 효과적인 알고리즘을 만들었다. 이렇게 개선된 방법을 사용함으로써 기존방법보다 처리 수행속도가 빨라짐을 확인하였다.
실사 영상에 가상 객체를 합성하기 위해서는 실사 영상 촬영 당시의 카메라 정보가 필요하다. 본 논문에서는 이러한 카메라 정보를 구하기 위하여 가상현실 분야에서 사용하고 있는 캘리브레이션 프리 정합 (Calibration-Free Registration) 기술을 기반으로 한 반자동 정합 기술을 제안하였다. 가상 현실은 실시간 응용인데 반하여 본 논문에서 제안하는 반자동 정합 기술은 합성 컨텐츠 저작을 위한 오프라인 응용에 적합한 방법으로 캘리브레이션 프리 정합기술의 합성 결과는 사용자의 입력정보와 밀접한 관계가 있다. 캘리브레이션 프리 정합기술은 두가지 사용자 입력을 필요로 한다. 첫번째 입력은 어파인공간 (Affine space)의 기저 (Basis vector)를 위한 특징점 정보이고, 두번째 입력 정보는 가상객체의 영상 투영점 입력이다. 본 논문에서는 이 두가지 사용자 입력중 기저를 위한 특징점 정보입력을 사용자가 쉽게, 정확한 정보를 입력할 수 있게하기 위하여, 사용자가 특징점을 개략적으로 입력하게 하고, 주변 영역에서 코너점 검출을 수행하여 사용자 입력을 수정하여 받아들리는 방법을 제안하였다. 실험결과 제안한 방법을 사용하여 구한 카메라 정보로 만족할 만한 합성 영상을 얻을 수 있었다.
본 논문에서는 이동변위를 기반으로 하는 휴대기기의 새로운 입력 방법을 제안한다. 이를 위하여 휴대기기에 장착되어 있는 카메라를 이용하여 영상을 연속적으로 획득하고, 획득된 영상간의 변위를 실시간으로 계산함으로써 휴대기기의 이동 변위를 추정하였다. 제안하는 알고리즘은 획득된 영상간의 변위를 실시간으로 계산하기 위하여 계산량이 적은 SUSAN 코너 검출기를 사용하여 두 영상에서 특징점 들을 추출하였다. 다음으로 추출된 특징점 사이의 매칭작업을 수행하기 위하여 투 패스 알고리즘을 적용한 보로노이 평면을 생성하고, 두 영상의 거리 값인 SAD (Sum of absolute difference)를 계산함으로써 두 영상간의 변위를 계산하였다. 실험결과에서는 총 1500장의 영상을 이용하여 변위 추정알고리즘의 성능을 평가하였다. 그 결과 최대 90% 이상 매칭 성공률을 보였으며, 연산 속도는 5 ms 이내였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.