• Title/Summary/Keyword: 케이크 여과

Search Result 50, Processing Time 0.023 seconds

Permeation behavior of kaolin solution in dead-end microfiltration (카올린 용액의 Dead-end형 정밀여과투과)

  • 장규만;정건용
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.133-136
    • /
    • 1998
  • 0.1 내지 $4 \mum$의 입도분포를 가진 kaolin용액을 dead-end형 여과 장치(Amicon Cell, 8050)를 이용하여 공칭세공이 $0.2 \mum$인 PTFE막으로 농도 및 운전압력에 따른 투과실험을 하였다. Kaolin 용액의 투과유속은 케이크 저항이 지배적이었으며 초기에는 분리막 표면에 케이크가 형성되고 그 후에 분리막 세공의 오염이 발생하는 것으로 관찰되었다.

  • PDF

Effect of Inorganic Particles on Organic Fouling in Pressurized Membrane Filtration (가압식 분리막 여과에서 무기입자의 존재가 유기파울링에 미치는 영향)

  • Jang, Hoseok;Kim, Jeonghwan
    • Membrane Journal
    • /
    • v.30 no.2
    • /
    • pp.131-137
    • /
    • 2020
  • In this study, effect of inorganic particles on organic fouling was investigated by a laboratory-scaled pressurized membrane filtration. In order to cause organic fouling, sodium alginate (SA) was used as a feed solution. Regardless of the presence of inorganic SiO2 particles, the complete pore blocking played an important role in determining the fouling rate during the initial period of membrane filtration. However, the formation of cake layer resulted in the membrane fouling more dominantly as filtration time progressed. In the presence of inorganic particles, both specific cake resistance and compressibility associated with the membrane fouling formed were relatively lower than that without SiO2 particles. Membrane fouling was more severe at constant flux mode of filtration than that observed at constant pressure mode probably due to the concomitant increase of compressibility of fouling layer with transmembrane pressure (TMP). It was found that the presence of SA and SiO2 particles in feed solution provided the synergistic effect on the hydraulic backwashing to reduce membrane fouling as compared to the SA solution alone without the inorganic particles.

Analysis of Membrane Fouling Reduction by Natural Convection Instability Flow in Membrane Filtration of Colloidal Solution: Application of Blocking Filtration Model (콜로이드 용액의 막여과에서 자연대류 불안정 흐름의 막오염 저감 효과 해석: 막힘여과 모델의 적용)

  • Kim, Ye-Ji;Youm, Kyung-Ho
    • Membrane Journal
    • /
    • v.29 no.6
    • /
    • pp.329-338
    • /
    • 2019
  • The constant-pressure and constant-flux membrane filtration experiments of alumina colloidal solution are performed to investigate defouling effect of the natural convection instability flow (NCIF) induced in membrane module. The permeate flux at constant-pressure and the transmembrane pressure (TMP) at constant-flux experiments are measured by changes the inclined angle (0, 90 and 180°) of membrane module to the gravity, and flux results are analyzed by using the blocking filtration model. NCIF are more induced as the inclined angles increased from 0° to 180°, and the maximum induced NCIF at 180° angle enhances flux to 2.8 times and reduces TMP to 85% after two-hour operation. As a result of analyzing flux data by applying the blocking filtration model, it is more reasonable to analyze them by using the intermediate blocking model within 15-minute operation time and then thereafter times by using the cake filtration model. The induced NCIF at 180° angle reduces the intermediate blocking fouling at 52% in the early operation time of 15-minute and thereafter the cake layer fouling at 93%. The main membrane fouling control mechanism of NCIF induced in membrane module is evaluated as suppressing the formation of the cake layer of particulate colloidal materials on membrane surface.

Analysis of Membrane Fouling Reduction by Natural Convection Instability Flow in Membrane Filtration of Protein Solution Using Blocking Filtration Model (막힘여과 모델에 의한 단백질 용액의 막여과에서 자연대류 불안정 흐름의 막오염 제어 효과 해석)

  • Kim, Ye-Ji;Youm, Kyung-Ho
    • Membrane Journal
    • /
    • v.29 no.1
    • /
    • pp.18-29
    • /
    • 2019
  • The dead-end ultrafiltration (UF) of BSA protein solution was performed to investigate the defouling effects of natural convection instability flow (NCIF) induced in membrane module. The permeate fluxes were measured according to the inclined angles ($0{\sim}180^{\circ}$) of membrane module with respect to gravity, and analyzed using the blocking filtration model. NCIF are more induced as the inclined angles increased from $0^{\circ}$ to $180^{\circ}$, and the induced NCIF enhances flux. Comparing the fluxes at $0^{\circ}$ inclined angle (no NCIF induction) and $180^{\circ}$ (maximum NCIF induction), the flux enhancements by NCIF induction are increased about 5 times in the short-term UF operation (2 hours) and about 17 times in the long-term operation (20 hours). As applying the blocking filtration model, it is more suitable to analyze the flux results by using the intermediate blocking model in the early times of UF operation within 15 minutes and then thereafter times by using the cake filtration model. NCIF induced at $180^{\circ}$ inclined angle reduces the intermediate blocking fouling at about 67% in the early times operation and thereafter the cake layer fouling at about 99.9%. The main defouling mechanism of NCIF induced in the membrane module is suppress the formation of protein cake layer.

The Effect of Support Material of Ceramic MF Membrane on the Fouling and backwashing Efficiency (세라믹 정밀여과막의 지지체 재질이 막오염과 역세척 효율에 미치는 영향)

  • 김재홍;이호상;이정학
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1997.04b
    • /
    • pp.39-39
    • /
    • 1997
  • 김치산업에서 원재료의 염적공정중에 발생하는 폐염적수를 처리하여 염적공정에 재사용하는 새로운 시스템을 개발하였다. 관형 정밀여과막을 사용한 본 연구에서 막오염의 감소와 높은 막투과유속의 유지를 위하여 산역세척과 투과수역세척이 도입되었고 대상이 되었던 세공크기가 비슷한 4종류의 막(Carbosep M14, Membralox Z100, Membralox A200, Microdyne MD020TP 2N)에 대하여 역세척의 효율이 각각 다르게 나타났다. 특히 지르코니아 재질의 막 표면과 탄소재질의 지지체로 이루어진 Carbosep M14 세라믹막은 투과수역세척시에 역세척을 하지 않았을 때 보다 오히려 투과유속이 감소하는 특이한 현상이 관찰되었고 이러한 역세척 효율의 차이의 원인을 규명하기위한 연구가 진행되었다. 4종류의 막에 대하여 전처리된 폐염적수의 여과시 진행되는 막오염 메카니즘을 알아보기 위하여 문헌에서 잘 알려진 4가지의 여과모델식을 적용하여 보았고 직렬여과저항모델을 이용하여 여과저항을 세분하여 측정하였다. 모델식의 적용결과 역세척의 효율이 좋은 3종류의 막에는 막표면의 케이크형성이 주된 투과유속의 감소원인임을 알아내었고 carbosep M14 막은 용존유기물의 비가역적인 흡착과 세공막힘이 주된 원인임을 알 수 있었다.

  • PDF

Enhanced Dewaterability of Sewage Sludge by a Natural Inorganic Conditioner (무기개량제를 이용한 하수슬러지의 탈수능 개선)

  • Nam, Se-Yong;Kim, Jeong-Ho;Kim, Sang-Hyoun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.10
    • /
    • pp.651-655
    • /
    • 2012
  • This study aimed to investigate the effect of an inorganic conditioner composed of natural inorganic materials on the dewaterbility of sewage sludge and compare the performance with those of conventional organic polymeric conditioners. A dosage of 2.0 mg inorganic conditioner/g sludge TS decreased time to filter test (TTF), specific resistance to filtration (SRF), water content of dewatered sludge cake, turbidity from 146 to 41 sec, from $8.3{\times}10^{14}$ to $2.4{\times}10^{14}$ m/kg, from 82.1 to 77.1%, from 112 to 61.1 NTU, respectively, which was compatible to the conventional cation organic polymer. An inorganic conditioner would be used in sewage sludge treatment as a suitable alternative conditioner. Regression analysis showed a strong relationship among TTF, SRF, and water content.

Experimental Study and Modelling on Membrane Fouling in Taylor Vortex Flow Microfiltration (테일러 와류 정밀여과에서 막오염의 실험적 연구 및 모델링)

  • 박진용;김현우;최창균
    • Membrane Journal
    • /
    • v.13 no.2
    • /
    • pp.88-100
    • /
    • 2003
  • A change of filtrate flux in Taylor vortex flow filtration was investigated experimentally by rotating speed of inner cellulose ester membrane cylinder (average pore size: 1.2 ${\mu}m$), slurry concentration, and particle size. The filtrate flux was a direct proportion relation with TMP, but an inverse relation with resistances. A change of cake resistance with time was examined by rotating speed, slurry concentration, and particle size. Initial resistance increased dramatically as raising slurry concentration, and the pseudo-steady state was maintained at high resistance value. However, times to reach the pseudo-steady state did not depend on slurry concentration. The resistance was larger as smaller particle size, because possibility of pore blocking inside membrane could be higher and shear effect should be lower as smaller particle size. A model equation suggested in this study was composed of particle deposition and removal terms, and could confirm well experimental data using average values of experimental coefficients.

Cake Reduction Mechanism in Coagulation-Crossflow Microfiltration Process (Crossflow 방식 응집-정밀여과 공정의 케이크층 저감 메커니즘)

  • Kim, Suhan;Park, Heekyung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.17 no.4
    • /
    • pp.519-527
    • /
    • 2003
  • Cake layer in crossflow microfiltration(CFMF) can be reduced by coagulation, enhancing membrane flux. This is because enlarging particle size by coagulation increases shear-induced diffusivity and the back-transport of rejected particles. However it is known that the enlarged particles are disaggregated by the shear force of the pump while passing through it. This study is to look at the disaggregation in relation with cake layer reducation. Kaolin and polysulfon hollow fiber microfilter are used for experiment. The reduction of cake resistance by coagulation is observed in a range of 17% to 53% at the various coagulation conditions. The particle size analysis results of the experiments show that aggregated particles in feed are completely disaggregated by pump but re-aggregation of particles occurs in membrane. This suggestes that the re-aggregation of particles is critical to cake reduction and flux enhancement, since the aggregated particles are completely broken. The mechanisms for re-aggregation in membrane are the same with those for coagulation in feed tank. Charge neutralization is better for CCFMF than sweep flocculation although it has two drawbacks in operation.