• Title/Summary/Keyword: 케이블 비파괴검사

Search Result 14, Processing Time 0.02 seconds

Field Application of a Cable NDT System for Cable-Stayed Bridge Using MFL Sensors Integrated Climbing Robot (누설자속센서를 탑재시킨 이동로봇을 이용한 사장교 케이블 비파괴검사 시스템의 현장 적용)

  • Kim, Ju-Won;Choi, Jun-Sung;Lee, Eun-Chan;Park, Seung-Hee
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.1
    • /
    • pp.60-67
    • /
    • 2014
  • In this study, an automated cable non-destructive testing(NDT) system was developed to monitor the steel cables that are a core component of cable-stayed bridges. The magnetic flux leakage(MFL) method, which is suitable for ferromagnetic continuum structures and has been verified in previous studies, was applied to the cable inspection. A multi-channel MFL sensor head was fabricated using hall sensors and permanent magnets. A wheel-based cable climbing robot was fabricated to improve the accessibility to the cables, and operating software was developed to monitor the MFL-based NDT research and control the climbing robot. Remote data transmission and robot control were realized by applying wireless LAN communication. Finally, the developed element techniques were integrated into an MFL-based cable NDT system, and the field applicability of this system was verified through a field test at Seohae Bridge, which is a typical cable-stayed bridge currently in operation.

Elasto-Magnetic Sensor-Based Local Cross-Sectional Damage Detection for Steel Cables (Elasto-Magnetic 센서를 이용한 강재 케이블 국부 단면 감소 손상 탐지)

  • Kim, Ju-Won;Nam, Min-Jun;Park, Seung-Hee;Lee, Jong-Jae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.4
    • /
    • pp.360-366
    • /
    • 2011
  • The Elasto-magnetic sensor is applied to detect the local cross-sectional loss of steel cables in this study while it was originally developed for measuring the tensile force in the previous works. To verify the feasibility of the proposed damage detection technique, steel bars which have 4-different diameters were fabricated and the output voltage value was measured at each diameter by the E/M sensor. Optimal input voltage and working point are chosen so that the linearity and resolution of results can ensure through repeated experiments, and then the E/M sensor was measured the output voltage values at the damage points of steel bar specimen that was applied the 4 types of damage condition based on the selected optimal experimental condition. This proposed approach can be an effective tool for steel cable health monitoring.

Implementation of PLC-Based Multi-modem for Process Automation of Non-destructive Inspection (비파괴검사 공정자동화를 위한 전력선통신 기반 복합통신장치의 구현)

  • Jung, Jun Hwan;Jun, Ho Ik;Kim, Hyun-Sik;Kang, Seog Geun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.4
    • /
    • pp.822-828
    • /
    • 2013
  • In this paper, a multi-modem for process automation of non-destructive inspection (NDI) which possibly generates various kinds of data is implemented and verified. Here, a variety of data such as control signals, text data, image data generated by inspection devices, sensors, computers are transmitted to the multi-modem via serial, Ethernet, and coaxial cable. We exploit a communication network in which powerlines are used as backbone transmission media. Thus, the implemented multi-modem has various ports and corresponding interfaces for data transmission. As a result of practical experiments, the multi-modem maintains almost constant data rate with little waveform distortion. In addition, the experiments confirm that the modem operates normally under extreme variation of temperature. It is, therefore, considered that the multi-modem can contribute significantly to implement powerline communication (PLC)-based process automation for NDI in which various kinds of data are practically generated.

Development of Magnetic Sensor for Measurement of the Cable Tension of Large Scale Bridge (대형교량 케이블 장력 측정을 위한 자기센서 개발)

  • Park, Hae-Won;Ahn, Bong-Young;Lee, Seung-Seok;Kim, Jong-Woo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.4
    • /
    • pp.339-344
    • /
    • 2007
  • Safety of large scale cable in bridge is very important because it may cause the unwanted catastrophic failure. Although the proof load were considered at the design stage, its soundness must be monitored continuously because the cable may be broken out without warning by the variable external load. The cable tension of in-use structures has been mainly measured by the resonance method and its use has been limited because of relatively large measurement uncertainty. Recently a new magnetic method was developed and its reliability is known to be good for evaluating the cable tension. In this study a system which can deliver the calibrated load to the cable was developed and the measurement reliability of developed magnetic sensor according to the change of external load was analyzed quantitatively. The effect of magnetization frequency, bias magnetic field, and temperature on the sensor output was also evaluated.

A Study on the Measurement of Ultrasound Velocity to Evaluate Degradation of Low Voltage Cables for Nuclear Power Plants (원전 저압케이블 열화도 평가를 위한 초음파 음속계측에 관한 연구)

  • Kim, Kyung-Cho;Kang, Suk-Chull;Goo, Charles;Kim, Jin-Ho;Park, Jae-Seok;Joo, Geum-Jong;Park, Chi-Seung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.4
    • /
    • pp.325-330
    • /
    • 2004
  • Several kinds of low voltage cables have been used in nuclear power plants for the supply of electric power, supervision, and the propagation of control signals. These low voltage tables must be inspected for safe and stable operation of nuclear power plants. In particular, the degradation diagnosis to estimate the integrity of low voltage rabies has recently been emphasized according to the long use of nuclear power plants. In order to evaluate their degradation, the surrounding temperature, hardness of insulation material, elongation at breaking point (EAB), etc. have been used. However, the measurement of temperature or hardness is not useful because of the absence of quantitative criteria; the inspection of a sample requires turning off of the power plant power; and, the electrical inspection method is not sufficiently sensitive from the initial through the middle stage of degradation. In this research, based on the theory that the ultrasonic velocity changes with relation to the degradation of the material, we measured the ultrasonic velocity as low voltage cables were degraded. To this end, an ultrasonic degradation diagnosis device was developed and used to measure the ultrasonic velocity with the clothing on the cable, and it was confirmed that the ultrasonic velocity changes according to the degradation of low voltage cables. The low voltage cables used in nuclear power plants were degraded at an accelerated rate, and EAB was measured in a tensile test conducted after the measurement of ultrasonic velocity. With the increasing degradation degree, the ultrasonic velocity decreased, whose potential as a useful parameter for the quantitative degradation evaluation was thus confirmed.

Crack Detection of Concrete Using Fiber Optic Cables (Fiber Optic Cable을 이용한 콘크리트 균열탐사)

  • Cho, Nam-So;Kim, Nam-Sik
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.2
    • /
    • pp.157-163
    • /
    • 2007
  • Crack detection technique for concrete structures has been developed in this study. Experimental tests were carried out to detect a surface and internal crack, employing common fiber optic cables and OTDR(optical time domain reflectometry), an optical signal analyzer which is widely used to detect damages at fiber optic cables in the field of optical engineering. While initial concrete crack is ready to occur under cracking force, the occurrence and location of the crack are simultaneously detected to give the same damage to fiber optic cables which have been attached to and/or embedded into concrete in advance. It is obtained through successive tests that the principal factors for crack detection is the covering state of fiber optic cable, and total 4 tests including a preliminary test were conducted and the crack detection technique was verified. The practical usefulness would be expected at crack management and maintenance of concrete structures.

Elasto-Magnetic Sensors-based Cross-sectional Loss Monitoring of Steel Cables (E/M 센서를 이용한 케이블 단면 손실 모니터링)

  • Kim, Ju Won;Park, Seunghee;Lee, Jong Jae;Yim, Jinsuk
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.92-92
    • /
    • 2011
  • 최근 건설기술의 발전과 함께 강재 케이블을 이용하는 시설물의 시공이 점점 증가하는 추세이다. 특히 현수교, 사장교와 같은 초장대 교량에 사용되는 케이블은 주거더 및 상판에 의한 하중의 대부분을 지지하는 핵심부재이다. 하지만 이러한 케이블 부재는 부식, 파단 등으로 인한 단면손실이 발생할 수 있고, 이로 인한 손상부의 응력집중으로 인해 시설물 전체의 붕괴로 이어질 수 있는 위험성을 가진다. 따라서 조기에 단면손실을 찾아 사고를 미연에 방지할 수 있는 강재 케이블 비파괴 검사 기술기반의 건전성 모니터링이 필수적이다. 이러한 효율적인 건전성 모니터링을 위해 스마트 센서를 활용한 연구가 활발히 이루어지고 있는데, 그중 대표적인 스마트 센서중 하나인 마그네틱 센서는 높은 신뢰도와 어디에나 적용 가능한 재현성 때문에 구조물 건전성 평가에 적용하기 유용한 기술로 그 적용범위가 선박, 항공등으로 점점 넓어지고 있는 추세이다. 마그네틱 센서는 그 적용대상에 따라 다양한 마그네틱 특성을 활용할 수 있는데, 최근에는 투자율 계측을 통해 케이블의 장력 측정이 가능한 Elasto-Magnetic 센서(E/M 센서)가 개발되었고 그 활용성에 대한 연구가 이뤄지고 있다. 이에 본 연구에서는 E/M 센서를 이용한 강재 케이블 모니터링 기술을 제안하고자 한다. E/M 센서는 본래 케이블의 장력측정을 위해 개발되었지만 본 연구에서는 강재 케이블 부재의 단면손실 검색을 위해 적용하였다. 제안된 기술의 실험적 검증을 위해 E/M 센서를 이용하여 4가지의 다른 직경을 가지는 강봉시편을 E/M 센서헤드의 1차 코일을 통해 자화시키고, 각각의 직경에서 출력전압을 2차 코일을 이용하여 계측하였다. 그 결과 강봉의 직경이 감소함에 따라 출력 전압이 감소함을 보였다. 반복실험을 통해 해상도 및 선형성이 확보되는 최적의 입력전압과 출력전압의 워킹포인트를 선정하였고, 선정된 조건에서 강봉시편을 일정 간격으로 스캔한 결과 단면감소에 따른 선형적인 출력전압 감소와 동시에 단면 변화 지점에서는 추세선에서 크게 벗어난 출력전압 계측값을 나타내었다. 본 실험을 통해 제안된 E/M 센서를 이용한 강재 케이블 모니터링 기술의 유용성 및 적용가능성을 확인할 수 있었다.

  • PDF

Diagnosis of Pipe Structures using Impedance Measurement Sensor nodes (임피던스 측정 센서 노드를 이용한 배관 설비 진단)

  • Jang, In-Hwan;Jeong, Yeon-Wook;Song, Byung-Hun
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2009.08a
    • /
    • pp.367-369
    • /
    • 2009
  • 본 논문은 저전력 무선 임피던스 기반 구조물 건전성 감시 USN 시스템을 활용하여 electro-mechanical Impedance 센서의 일종인 PZT센서를 부착한 배관 구조물의 건전성을 진단하는 방법과 그 실험 결과에 대해 소개 한다. 기존에는 건설구조물에 가해지는 전기적인 입출력비에 해당하는 임피던스를 계측하기 위해서 비교적 고가의 대형 계측 장비가 필요로 했으며, 구조물에 설치된 센서를 계측장비에 연결하기 위한 유선의 케이블 작업 역시 추가로 필요했었다. 대형 배관 구조물의 경우에는 이러한 문제점 때문에 임피던스를 이용한 능동형 센서가 제대로 활용되지 못하고 있고 비정기적인 비파괴검사에만 국한되어 사용되어 왔다. USN기술은 저전력 소출력 무선통신을 통해 기존의 계측시스템과는 다른 상시모니터링의 장점을 가지고 있는 기술로서 최근 토목/건설 분야에서 적극적으로 활용이 되는 융합기술이다. 본 논문에서 구조물 건전성 감시 분야와 저전력 무선 계측 기술의 통합을 통해 얻어진 최적화된 배관 건전도 진단 센서 노드의 효율성을 정량적 실험 데이터를 통해 입증하고, 앞으로의 연구 방향에 대한 제안으로 끝을 맺는다.

  • PDF

Development of Open-Connect Type Eddy Current Transducers for the Detection of Surface Flaws in Continuous Pipeline (연속된 배관의 결함 검출을 위한 개폐식 와전류 탐촉자 개발)

  • Kim, Young-Joo;Ahn, Bong-Young;Lee, Seung-Seok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.2
    • /
    • pp.187-192
    • /
    • 2002
  • The open-connect type eddy current transducer for the flaw detection in continuously connected pipelines was developed. This eddy current transducer is for the on-line inspection of the tubes in industries, to which commercial encircling probes are not applicable. The excitation coil that consists of a ribbon type cable and a flat connector can be opened and closed on purpose. The sensing coils of this transducer are circumferentially arrayed near the outside of the tube wall but axially displaced from the exciter by about one and half tube diameter. In application to steel tubes, and the performance of this transducer was evaluated as a little behind those of magnetic saturation type in signal to noise ratio and flaw size decision, but usable to detect or to locate large size flaws in steel tubes. Surface cracks deeper than 19% of the tube thickness could be detected with good signal to noise ratio.

Development and Simulation of a Detecting Method using Reflectometry of Electrical Signal (전기적 신호의 반사파 측정법을 적용한 부식 진단 기술의 개발 및 시뮬레이션)

  • Yoon, Seung Hyun;Bang, Su Sik;Shin, Yong-June;Lim, Yun Mook
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.6
    • /
    • pp.367-372
    • /
    • 2018
  • Defects in aging infrastructures such as pre-stressed concrete bridges and cable bridges can cause a collapse of the entire structure. Defects, however, are often located inside of the structures that they are not visible from the outside. For example, in PSC bridges, because reinforcement steels are encased by exterior covers, corrosion and void on the reinforcement steel cannot be detected with a visual inspection. Therefore, in this paper, a new non-destructive evaluation(NDE) method that can detect defects inside of structures is presented. The new method utilizes sending of electrical signals, a method often utilized in electrical engineering to detect any discontinuities on power cables. In order to confirm the applicability and accuracy of the method, some experiments were conducted in the laboratory. And to overcome the hardship of conducting experiments on real structures due to their enormous size, simualtions were conudcted using a commercial program, COMSOL. The results of the experiments were analyzed and compared to confirm the accuracy of the simualtions.