다양한 응용분야에서 심층신경망 기반의 학습 모델이 앞 다투어 이용됨에 따라 인공지능의 설명 가능한 동작 원리 해석과, 추론이 갖는 불확실성에 관한 분석 또한 심도 있게 연구되고 있다. 이에 심층신경망 기반 기계학습 모델의 취약성이 수면 위로 드러났으며, 이러한 취약성을 이용하여 악의적으로 모델을 공격함으로써 오동작을 유도하고자 하는 시도가 다방면으로 이루어짐에 의해 학습 모델의 강건함 보장은 보안 분야에서의 쟁점으로 부각되고 있다. 모델 추론의 입력으로 이용되는 이미지에 교란값을 추가함으로써 심층신경망의 오분류를 발생시키는 임의의 변형된 이미지를 적대적 사례라 정의하며, 본 논문에서는 최근 인공지능 및 컴퓨터비전 분야에서 이루어지고 있는 이미지 기반 적대적 사례의 생성 기법에 대하여 논한다.
비디오 월 컨트롤러의 멀티스크린에 영상을 표출하기 위해서는 입력 영상과 영상의 수신 및 표출을 수행하는 클라이언트 프로그램이 필요하다. 입력 영상을 얻기 위한 수단으로는 영상 송출이 가능한 장비를 케이블로 연결하거나 네트워크를 통해 수신하는 방법이 있다. 많은 스트리밍 장치를 보유하고 있는 시스템에서는 관리가 용이한 영상분배서버를 사용하는 것이 효율적이지만, 통상의 영상분배 서버는 컴퓨터 비전 기술을 탑재하고 있지 않고 일단 스트리밍을 시작한 후에는 스트리밍 장치를 변경할 수 없는 단점이 있다. 이에 본 논문에서는 스트리밍을 실행한 후에도 스트리밍 장치를 전환하여 스트림을 전송할 수 있는 얼굴 인식 기반의 영상분배 시스템을 제안한다.
Proceedings of the Korean Institute of Navigation and Port Research Conference
/
2022.06a
/
pp.28-30
/
2022
본 연구에서는 컴퓨터 비전 기반의 딥러닝 객체 인식 기술을 이용하여 속초해수욕장에서 수집한 레이더 이미지에서 선박, 섬 및 부유체에 대해 탐지(Detection), 인식(Recognition)하는 연구를 수행하였다. 2021년 8월에 수집한 레이더 영상을 이용하여 본 연구를 수행하였으며, 움직이는 물표와 섬 등을 구분하였다. 일부 환경적인 제약에 따라 에러 발생이 있었지만, 향후 현재까지 수집한 레이더 영상을 추가하여 정확도를 높일 예정이다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2017.06a
/
pp.74-75
/
2017
원의 대칭을 이용하는 회전 스캔 방식으로 원의 중심을 인식하는 기술을 제안한다. 컴퓨터 비전에서 원을 인식하는 기술은 매우 중요한 기술이다. 원 인식 기술은 높은 정확성을 위해 계속해서 연구되어왔다. 기존의 대표 기술인 Circle Hough transform(CHT)은 원을 인식하기 위해서 3차원의 축적 배열이 필요하며 실영상에서 원근 왜곡이 있는 경우에는 원이 인식되지 않는다. 원근 왜곡이 있는 경우에도 원 중심을 인식 할 수 있는 회전 스캔 방식을 제안한다. 제안하는 기술의 정확성을 입증하기 위해서 기존 기술 중 하나인 Open CV가 제공하는 gradient-CHT기술과 비교하는 실험을 진행하였다. 실험 결과는 제안하는 기술이 Open CV보다 우수하다는 것을 보여준다.
Kim, Shin;Lee, Yegi;Yoon, Kyoungro;Choo, Hyon-Gon;Lim, Hanshin;Seo, Jeongil
Journal of Broadcast Engineering
/
v.27
no.3
/
pp.273-282
/
2022
MPEG-VCM(Video Coding for Machine) aims to standardize video codec for machines. VCM provides data sets and anchors, which provide reference data for comparison, for several machine vision tasks including object detection, object segmentation, and object tracking. The evaluation template can be used to compare compression and machine vision task performance between anchor data and various proposed video codecs. However, performance comparison is carried out separately for each machine vision task, and information related to performance evaluation of multiple machine vision tasks on a single bitstream is not provided currently. In this paper, we propose a performance evaluation method of a video codec for AI-based multi-tasks. Based on bits per pixel (BPP), which is the measure of a single bitstream size, and mean average precision(mAP), which is the accuracy measure of each task, we define three criteria for multi-task performance evaluation such as arithmetic average, weighted average, and harmonic average, and to calculate the multi-tasks performance results based on the mAP values. In addition, as the dynamic range of mAP may very different from task to task, performance results for multi-tasks are calculated and evaluated based on the normalized mAP in order to prevent a problem that would be happened because of the dynamic range.
The Journal of Korean Institute of Communications and Information Sciences
/
v.38C
no.3
/
pp.278-287
/
2013
Modern information technologies continue to provide industries with new and improved methods. With the rapid development of Machine to Machine (M2M) communication, a smart container supply chain management is formed based on high performance sensors, computer vision, Global Positioning System (GPS) satellites, and Globle System for Mobile (GSM) communication. Existing supply chain management has limitation to real time container tracking. This paper focuses on the studies and implementation of real time container chain management with the development of the container identification system and automatic alert system for interrupts and for normal periodical alerts. The concept and methods of smart container modeling are introduced together with the structure explained prior to the implementation of smart container tracking alert system. Firstly, the paper introduces the container code identification and recognition algorithm implemented in visual studio 2010 with Opencv (computer vision library) and Tesseract (OCR engine) for real time operation. Secondly it discusses the current automatic alert system provided for real time container tracking and the limitations of those systems. Finally the paper summarizes the challenges and the possibilities for the future work for real time container tracking solutions with the ubiquitous mobile and satellite network together with the high performance sensors and computer vision. All of those components combine to provide an excellent delivery of supply chain management with outstanding operation and security.
Park, Soon-Yong;Lee, Min-jae;Pathum, Bandara;Um, Gi-Mun;Cheong, Won-Sik
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2019.06a
/
pp.62-63
/
2019
본 논문에서 개발하고자하는 다시점 스테레오 영상 기반의 3차원 깊이 정보 획득 기술은 스테레오 비전, light field, 가상시점, 방송 콘텐츠, 등 다양한 분야의 기술이 융합된 기술로 연구의 중요성이 매우 높다. 본 논문에서는 SGM 기반의 멀티베이스 라인 스테레오 정합 기술을 개발하고 다시점 스테레오 영상에 적용하여 깊이 정보를 획득하였다. 두 시점 간의 스테레오 정합에 있어서 다방향의 에너지 최소화 기술을 적용하고 시점 간의 정합비용함수를 누적하여 마지막으로 S공간 누적방법으로 최적의 깊이영상을 획득하였다. 기존의 스테레오 정합에 비하여 멀티베이스라인 스테레오 정합의 성능 향상을 확인하고 Middlebury 스테레오 영상을 이용하여 성능을 분석하였다.
3차원 깊이 영상은 시점으로부터 객체까지의 거리와 관련된 정보를 제공하는 영상으로 최근 자율주행 자동차, 스마트 드론, 로보틱스, 증강 현실, 의료 영상 등에 핵심 정보로 활용되는 매우 중요한 정보이다. 이에 따라 컴퓨터 비전 분야에서는 2차원 영상으로부터 3차원 깊이 정보를 획득하는 연구가 계속되어 왔고, 최근 인공지능 기술의 발달에 힘입어 그 성능도 나날이 향상되고 있다. 그 중에서도 스테레오 영상 간의 매칭을 통하여 깊이 정보를 획득하는 스테레오 매칭 기술은 데이터베이스 구축이 비교적 용이하고 획득 환경이 제한적이지 않다는 장점으로 인해 널리 활용되고 있다. 하지만 텍스쳐가 없는 영역, 패턴이 반복되는 영역, 가림 영역 등에서 성능에 한계를 보이기 때문에, 깊이 영상의 신뢰도를 추정하는 스테레오 깊이 영상의 신뢰도 추정 기술을 이용하여 깊이 정보를 효과적으로 복원할 수 있다. 본 고에서는 스테레오 매칭을 통하여 획득한 깊이 영상의 신뢰도 추정 기술의 발전 동향을 살펴보고 현재 기술의 한계점과 향후 나아갈 방향에 대해서 토의한다.
Kim, Min-gyu;Han, Youngsub;Yoo, Soo-min;Kim, Seung-hwan;Park, Myung-hwan
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2020.07a
/
pp.34-35
/
2020
최근 컴퓨터 비전 분야에서는 딥러닝 기술을 활용하면 기존 방식을 뛰어 넘는 높은 수준의 성능 향상을 기대할 수 있다. 특히 고, 영상 감지 시스템에서의 침입 탐지와 같은 보안 분야에서는 실시간 성과 높은 수준의 정확도를 보장하기 때문에 딥러닝 기술의 적용은 필수적으로 인식 되고 있다(Lee et. al., 2019). 본 논문에서는 상용 서비스 중인 영상 감지 시스템의 침입 탐지 기술 동향 및 Edge Computing 기술을 활용한 영상 인식 시스템의 개선 방안을 제시한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.