초보 학습자의 프로그래밍 과정에서 발생하는 오류는 다양하며 학습자가 스스로 오류 분석을 하거나 수정은 어렵다. 이에 본 논문은 블록 프로그래밍 기반의 교육 플랫폼인 에듀비를 활용하여 오류 분석 방안을 제시하고자 한다. 분석 방안의 활용 가능성을 확인하기 위해 실제 학습자들이 분류모델을 생성하고 평가하는 과제를 수행하였고 학습자들이 과제를 수행하면서 발생한 오류사례에 대해 분석하였다.
최근 기계 번역 기술과 자동 노이즈 생성 방법론을 기반으로 한국어 맞춤법 교정 연구가 활발히 이루어지고 있다. 해당 방법론들은 노이즈를 생성하여 학습 셋과 데이터 셋으로 사용한다. 이는 학습에 사용된 노이즈 외의 노이즈가 테스트 셋에 포함될 가능성이 낮아 정확한 성능 측정이 어렵다는 한계점이 존재한다. 또한 실제적인 오류 유형 분류 기준이 없어 연구마다 사용하는 오류 유형이 다르므로 질적 분석에 어려움을 겪고 있다. 이를 해결하기 위해 본 논문은 딥러닝 기반 한국어 맞춤법 교정 연구를 위한 새로운 '오류 유형 분류 체계'를 제안하며 이를 바탕으로 기존 상용화 한국어 맞춤법 교정기(시스템 A, 시스템 B, 시스템 C)에 대한 오류 분석을 수행하였다. 분석결과, 세 가지 교정 시스템들이 띄어쓰기 오류 외에 본 논문에서 제시한 다른 오류 유형은 교정을 잘 수행하지 못했으며 어순 오류나 시제 오류의 경우 오류 인식을 거의 하지 못함을 알 수 있었다.
챗봇(Chatbot)은 자연어처리기술 등 인공지능 기술을 기반으로 한 사용자 친화적인 대화 방식 인터페이스를 제공하는 장점이 있어, 금융, 상담, 주문 등 다양한 산업 분야에서 적용되고 있다. 그러나, 챗봇의 응답이 사용자의 정신 모형과 불일치하는 경우, 다음 대화를 이어가는데 어려움을 야기하게 된다. 그러므로, 챗봇의 사용성을 확보하기 위해서는 응답 오류의 제거 또는 완화가 필수적이다. 기존의 챗봇의 사용성 개선과 관련된 연구들은 설문조사와 인터뷰 등 사용성 평가를 통해 상위 수준의 개선 방향만을 제안하고 있다. 따라서, 챗봇 개발 시, 실무자들이 응답 오류의 문제점을 분석하고, 이를 해결하기 위한 구체적인 개선 방안을 제시하는 데 한계가 있었다. 본 논문에서는 FMEA(Failure Modes and Effects Analysis) 기법을 활용해, 응답 오류의 치명도를 파악하고, 치명적인 오류들에 대해서는 FTA(Fault Tree Analysis) 기법을 기반으로 원인 분석을 실시하여 구체적으로 문제를 해결하기 위한 프로세스를 제안한다. 본 프로세스의 효용성을 검증하기 위해 주문 도메인의 챗봇에 적용해 보았다.
어휘 인식 시스템의 오류 보정방법으로는 오류 패턴매칭 기반 방법과 어휘의미 패턴 기반방법이있으며, 이들 방법에서는 오류 보정을 위해 핵심어를 의미적으로 분석하지 못하는 문제점을 가지고 있다. 이를 개선하기 위해 본 논문에서는 음절 복원 알고리즘을 이용한 핵심어 오류 보정 시스템을 제안한다. 인식된 음소 열을 의미 분석 과정을 거쳐 음소가 갖는 의미를 파악하고 음절 복원 알고리즘을 통해 음운 변동이 적용되기 이전의 문자열로 복원하므로 핵심어를 명확히 분석하고 오인식을 줄일 수 있다. 시스템 분석을 위해 음소 유사율과 신뢰도를 이용하여 오류 보정율을 구하였으며, 어휘 인식 과정에서 오류로 판명된 어휘에 대하여 오류 보정을 수행하였다. 에러 패턴 학습을 이용한 방법과 오류 패턴 매칭 기반 방법, 어휘 의미 패턴 기반 방법의 성능 평가 결과 3.0%의 인식 향상율을 보였다.
로봇을 이용한 프로그래밍 학습은 획일적이고 정형화된 기존 교육환경에서 벗어나 미래사회의 창의적 학습을 미리 경험할 수 있으며 수학 및 과학의 가장 기초가 되는 알고리즘을 이해하고 향상시키는데 가장 적절한 학습방법이다. 본 연구에서는 초등학생들이 로봇프로그래밍 시 나타날 수 있는 오류의 유형들을 제안하였으며 학습을 위한 교육과정을 개발한 후 초등학생 5, 6학생들을 대상으로 로봇프로그래밍 학습을 시켰다. 학습과정에서 발생한 오류들을 수집하고 분류하였으며 또한, 기존 연구된 컴퓨터기반 프로그래밍언어와 비교 분석하였다. 본 연구에서의 로봇프로그래밍 실행경험을 통해 컴퓨터기반 프로그래밍에서 창의성학습에 큰 장애요소로 평가된 오류요소들 즉, 프로그램사용 미숙으로 인한 오류, 단순한 오타, 문법오류 그리고 코딩실수 등을 전체 오류의 약 21%로 나타나 기존 컴퓨터기반 프로그래밍언어 학습에서 조사된 오류비율(약 53%)에 비해 현저하게 줄어드는 것으로 분석되었다. 이러한 오류의 감소는 초등학생들의 흥미도와 성취도 향상을 위한 주요요소로 판단된다. 따라서, 학습과정에서 보다 많은 논리 및 문제해결을 위한 요소들에 노출되어 있어 창의성 알고리즘 학습에 매우 효과적임을 알 수 있다.
소프트웨어가 대형화되고 복잡해짐에 따라 발생하는 오류가 증가되고 있다. 안전성이 특히 중요시되는 안전필수(safety-critical) 내장형 시스템에서 오류가 발생하면 인명상의 피해 또는 재산상의 피해를 야기한다. 개발 후, 테스팅을 통해 이런 오류를 찾는 비용은 매우 크고, 모든 오류를 찾는 것은 불가능하다고 인식되고 있다. 따라서 소프트웨어 개발단계에서 이런 오류를 탐지하고 제거하려는 노력이 증대되고 있다. 본 논문에서는 SPARK Ada를 사용하여 안전필수 내장형 시스템을 개발할 때, 오류를 제거할 수 있는 흐름분석(flow analysis) 기법을 사용하여 특정한 타입의 오류를 제거할 수 있음을 보인다. 또한 이를 적용하여 안전필수 시스템을 개발한다.
오류 정정 부호(error-correcting code)를 사용하는 McEliece 암호 체계는 양자 컴퓨터에서도 안전한 공개키 암호기법으로서 주목 받아왔다. 본고에서는 McEliece 암호 체계에 사용되는 오류 정정 부호와 그 조건, 암호 체계의 구조와 그 발전 과정 및 응용을 알아보고, 안전성 분석에 대해 소개한다.
최근 한국을 포함한 여러 국가들에서 프로그래밍 교육이 중요시 되고 있다. 그러나 이런 상황으로 인해 더 많아진 학생들은 미숙함으로 인해 숙련자에 비해 더 많은 오류를 만나지만 이를 해결하기 위한 디버깅 실력은 아직 미숙하다. 따라서 본 논문에서는 프로그래밍 교육 지원을 위한 초보자용 GUI 디버깅 도우미 UDB (Unity-DeBugger)를 제안한다. UDB는 제출한 학생 코드를 분석하여 반응형 추적표와 오류 로그를 생성하고 이를 기반으로 GUI 및 애니메이션으로 만들어 학생과 상호작용한다. 특히 UDB는 반응형 추적표를 통해 프로그램 안에 있는 변수들의 현재 상태를 보여주고 순방향 추적뿐만 아니라 기존 IDE의 디버깅 도구들과는 다르게 역방향 추적이 가능하다는 큰 특징이 있다. 이런 UDB를 예시 코드에 실제로 적용한 결과를 통해 미숙한 학생도 역방향 추적 기능을 사용하여 오류 원인을 쉽게 찾을 수 있음을 보인다.
초거대 언어모델은 과연 수수께끼 문제에 재치있는 답변을 할 수 있을까? 최근 초거대 언어모델(Large language model, LLM)은 강력한 성능 및 유저 만족도를 보이며 세계의 이목을 집중시키고 있다. 여러 태스크들에 대한 정량 평가를 넘어서 최근에는 LLM의 창의력 및 고도화된 언어능력을 평가하는 연구들이 등장하고 있다. 본 논문에서는 이러한 연구 흐름에 따라 LLM의 재치에 관해 고찰해본다. 이때 재치를 평가하기 위한 태스크로 이를 요구하는 말놀이인 수수께끼를 활용한다. 본 논문은 LLM이 수수께끼를 잘 수행하는지를 모델 추론을 통해 평가하며, 모델 추론 시 활용되는 프롬프트들의 성격에 따른 성능 변화를 관찰한다. 또한 수수께끼의 종류에 따른 모델의 능력을 비교 분석하며 LLM의 추론 결과에 대한 오류 분석을 수행한다. 본 논문은 실험을 통해 GPT-4가 가장 높은 성능을 보이며, 설명글이나 데이터 예시를 추가할 시 성능을 한층 더 향상시킬 수 있음을 확인한다. 또한 단어 기반보다는 특성 기반의 수수께끼에 더욱 강력한 성능을 보이며, 오류 유형 분석을 통해 LLM이 환각(hallucination) 문제와 창의력을 동시에 가지고 있다고 분석한다.
본 연구에서는 ICT 교육의 효과를 높이고자 ICT 활용 학습 과정 시 학습자에게서 나타나는 오류의 사례들을 분석하여 오류 유형을 설정하고 그에 대한 효과적인 처치 방안을 탐색하였다. 관찰, 면담, 설문 조사 등의 방법을 이용하여 오류 사례를 탐색한 결과 기능 혼동 오류, 개념 혼동 오류, 인터페이스 해석 장애 오류, 심리적 불안으로 인한 오류, 학습자 성격 유형에 의한 오류, 습관적인 오류 등 6가지 오류 유형을 설정하였다. 그중 가장 많은 빈도를 차지하는 기능 혼동 오류와 개념 혼동 오류 중심으로 웹 기반 Q&A 학습 시스템을 개발하고 이용한 오류 처치 방안을 제안하였다. 또한 제안한 오류 처치 방안을 현장에 적용하고 그 효과를 검증하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.