• Title/Summary/Keyword: 컴파스 알고리즘

Search Result 4, Processing Time 0.018 seconds

Implementation of the Azimuth Correction Device using Astronomical Observation (천측을 이용한 방위 보정 장치의 구현)

  • Lim, Jin-Kook;Yim, Jae-Hong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.4
    • /
    • pp.846-854
    • /
    • 2017
  • In this paper, we proposed a method to reduce the error of compass by combining the ceiling technique used in the past with modern IT technology. We combined an encoder and the Azimuth Circle for applying an algorithm. The algorithm is able to calculate the true north by using astronomical observation. Finally, we implemented the embedded system possible to indicate various situations and perform calculations. As a result, it isn't only able to calculate the true north with an error of about $0.2^{\circ}$ but also takes less than 5 seconds. Originally, using astronomical observation requires more than 5minutes. So it is analyzed as convenient by solving the problem of taking lots of time. Especially, we present the tolerance less than $0.5^{\circ}$ by the analysis of the existing gyrocompass and the bearing standard of IMO. In conclusion, we clearly confirm that the results of this paper are possible to reduce the error of various compasses in a real world.

Development of Precision Spraying System Using Machine Vision and DGPS (기계시각과 DGPS를 이용한 정밀방제 시스템 개발)

  • 조성인;정재연;김유용;남기찬
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2002.02a
    • /
    • pp.426-431
    • /
    • 2002
  • 본 연구에서는 DGPS와 칼라 CCD 카메라를 이용한 잡초의 검출을 위한 영상처리 시스템과 분무시스템을 개발하고 통합하여 정밀 방제 시스템을 개발하였다. 방제 요구부위에 실제 정밀한 살포를 위해 펌프, 노즐 및 레귤레이터로 구성된 장치를 구성하고 컨트롤러를 제작 통합하여 분무 시스템을 개발하였다. 개별 노즐별로 ON/OFF에 의한 변량 살포가 가능하도록 각 노즐별로 레귤레이터를 장착하였다. 정밀 방제용 이동식 차량을 제작하고 노즐별로 ON-OFF 제어가 가능한 살포장치를 부착하였으며, 알고리즘을 통합하여 정밀방제 시스템을 개발하였다. 개발한 시스템은 영상 획득 $\longrightarrow$ DGPS 좌표 획득 $\longrightarrow$ 자이로 컴파스 데이터 획득 $\longrightarrow$ 데이터베이스로부터 작물의 위치정보 획득 $\longrightarrow$ 영상처리를 이용한 방제요구부위 검출 $\longrightarrow$ 노즐별 개별 방제 작업이 순서적으로 반복해서 진행되었다. 완성된 시스템의 성능 및 안정성을 평가하기 위해서 서울대학교 부속 과수원에서 무를 대상으로 개발된 시스템을 검증하였다. 개발된 시스템은 RS-232C 통신을 이용하여 데이터의 전송을 수행할 수 있었으며, 순차적인 진행이 가능하도록 통합 프로그램을 제작하였으며, 검증 결과 정밀방제의 가능성을 보였다.

  • PDF

Does Artificial Intelligence Algorithm Discriminate Certain Groups of Humans? (인공지능 알고리즘은 사람을 차별하는가?)

  • Oh, Yoehan;Hong, Sungook
    • Journal of Science and Technology Studies
    • /
    • v.18 no.3
    • /
    • pp.153-216
    • /
    • 2018
  • The contemporary practices of Big-Data based automated decision making algorithms are widely deployed not just because we expect algorithmic decision making might distribute social resources in a more efficient way but also because we hope algorithms might make fairer decisions than the ones humans make with their prejudice, bias, and arbitrary judgment. However, there are increasingly more claims that algorithmic decision making does not do justice to those who are affected by the outcome. These unfair examples bring about new important questions such as how decision making was translated into processes and which factors should be considered to constitute to fair decision making. This paper attempts to delve into a bunch of research which addressed three areas of algorithmic application: criminal justice, law enforcement, and national security. By doing so, it will address some questions about whether artificial intelligence algorithm discriminates certain groups of humans and what are the criteria of a fair decision making process. Prior to the review, factors in each stage of data mining that could, either deliberately or unintentionally, lead to discriminatory results will be discussed. This paper will conclude with implications of this theoretical and practical analysis for the contemporary Korean society.

Development of Hovering AUV 'NOAH' Test-bed for Underwater Explorations (수중탐사용 호버링 무인잠수정 NOAH의 테스트베드 개발)

  • Byun, Seung-Woo;Kim, Joon-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.2
    • /
    • pp.414-419
    • /
    • 2010
  • This paper describes the design and performance of a hovering AUV 'NOAH' constructed at Jeju National University. We analyse the dynamic performance of NOAH using simulation program and carry out depth control test at small basin. The main purpose of NOAH is to carry out fundamental tests on its attitude control and position control. Its configuration is similar to general ROV appearance for underwater works and dimension is $0.75m{\times}0.5m{\times}0.5m$. It has 4 thrusters of 450watt for longitudinal/lateral/vertical propulsion and is equipped with a pressure sensor for measuring water depth and a magnetic compass for measuring heading angle. The navigation of the vehicle is controlled by an on-board Pentium III-class computer, which runs with the help of the Windows XP operating system. These give us an ideal environment for developing various algorithm which are needed for developing and advanced hovering AUV.